On the Number of Non-Hamiltonian Graphs
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 702-710
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, maximal non-Hamiltonian graphs (MNH graphs), i.e., non-Hamiltonian graphs such that the addition of any new edge violates their property of being non-Hamiltonian are studied. It is shown that the study of MNH graphs can be reduced to the study of the so-called simplified MNH graphs. Restrictions on the structure of maximal cliques of simplified MNH graphs are obtained, the orders and the number of such graphs are estimated.
@article{MZM_2004_75_5_a6,
author = {P. V. Roldugin},
title = {On the {Number} of {Non-Hamiltonian} {Graphs}},
journal = {Matemati\v{c}eskie zametki},
pages = {702--710},
year = {2004},
volume = {75},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a6/}
}
P. V. Roldugin. On the Number of Non-Hamiltonian Graphs. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 702-710. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a6/
[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | Zbl
[2] Roldugin P. V., “Maksimalno negamiltonovye grafy”, Tretii Vserossiiskii simpozium po prikladnoi i promyshlennoi matematike, Tezisy dokladov, TVP, M., 2002, 238–239
[3] Bondy J. A., “Variations on the Hamiltonian theme”, Canad. Math. Bull., 14:1 (1972), 57–62 | MR
[4] Kharari F., Teoriya grafov, Mir, M., 1973, s. 86–87
[5] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, s. 210–219 | Zbl