On the Bol Loops
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 693-701
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, the Bol loops and related groups are studied. We suggest a universal way to construct a Bol loop and find criteria for simplicity and finiteness of such loops.
@article{MZM_2004_75_5_a5,
author = {E. K. Loginov},
title = {On the {Bol} {Loops}},
journal = {Matemati\v{c}eskie zametki},
pages = {693--701},
year = {2004},
volume = {75},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a5/}
}
E. K. Loginov. On the Bol Loops. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 693-701. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a5/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967
[2] Loos O., Simmetricheskie prostranstva, Nauka, M., 1985
[3] Neumann B. H., “An essay of free products of groups with amalgamations”, Philos. Trans. Roy. Soc. London. Ser. A, 246 (1954), 503–554 | DOI | MR | Zbl
[4] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | Zbl
[5] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl