On Asymptotic Properties of Solutions to Weakly Nonlinear Systems in the Neighborhood of a Singular Point
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 683-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the class of so-called weakly hyperbolic linear systems, which includes correct and hyperbolic (exponentially-dichotomous) systems. We prove new results generalizing related classical theorems on the conditional stability of solutions. We establish the existence of stable manifolds consisting of points corresponding to the solutions of such systems with negative Lyapunov exponents. We study the behavior of solutions starting outside the stable manifold. The technique used in our paper is similar to that in the theory of hyperbolic systems.
@article{MZM_2004_75_5_a4,
     author = {S. G. Kryzhevich},
     title = {On {Asymptotic} {Properties} of {Solutions} to {Weakly} {Nonlinear} {Systems} in the {Neighborhood} of a {Singular} {Point}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {683--692},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a4/}
}
TY  - JOUR
AU  - S. G. Kryzhevich
TI  - On Asymptotic Properties of Solutions to Weakly Nonlinear Systems in the Neighborhood of a Singular Point
JO  - Matematičeskie zametki
PY  - 2004
SP  - 683
EP  - 692
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a4/
LA  - ru
ID  - MZM_2004_75_5_a4
ER  - 
%0 Journal Article
%A S. G. Kryzhevich
%T On Asymptotic Properties of Solutions to Weakly Nonlinear Systems in the Neighborhood of a Singular Point
%J Matematičeskie zametki
%D 2004
%P 683-692
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a4/
%G ru
%F MZM_2004_75_5_a4
S. G. Kryzhevich. On Asymptotic Properties of Solutions to Weakly Nonlinear Systems in the Neighborhood of a Singular Point. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 683-692. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a4/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, T. 2, M., 1956

[2] Perron O., “Über Stabilitat und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen”, Math. Z., 29 (1929), 129–160 | DOI | MR

[3] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977 | Zbl

[4] Grobman D. M., “Kharakteristicheskie pokazateli sistem, blizkikh k lineinym”, Matem. sb., 30:1 (1952), 121–166 | MR | Zbl

[5] Kryzhevich S. G., “Uslovnaya ustoichivost sistem obyknovennykh differentsialnykh uravnenii i polugiperbolicheskie sistemy”, Differents. uravneniya, 36:1 (2000), 39–47 | MR | Zbl

[6] Kryzhevich S. G., “Integralnaya razdelennost i uslovnaya ustoichivost reshenii obyknovennykh differentsialnykh sistem po pervomu priblizheniyu”, Vestn. molodykh uchenykh. Ser. prikl. matem. i mekh., 2000, no. 3, 34–49 | MR

[7] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Peterburgskogo un-ta, S.-Pb., 1992