Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 663-669
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the attractors of the boundary-value problem
$$
u_t=\sqrt \varepsilon (D_0 + \sqrt \varepsilon D_1)\Delta u +
(A_0 + \varepsilon A_1)u + F(u),\qquad
u_x|_{x=0,x=l_1} = u_y|_{y=0,y=l_2}=0,
$$
where $0\le\varepsilon\ll 1$, $u\in \mathbb{R}^N$, $N\ge 3$, $\Delta $ is the Laplace operator, and $-D_0$ is the Hurwitz matrix. For such a boundary-value problem, under certain assumptions, we establish the existence of any finite fixed number of stable cycles, provided that $\varepsilon>0$ is chosen appropriately small. In other words, it is shown that this boundary-value problem involves the buffer phenomenon.
@article{MZM_2004_75_5_a2,
author = {A. Yu. Kolesov and A. N. Kulikov and N. Kh. Rozov},
title = {Attractors of {Singularly} {Perturbed} {Parabolic} {Systems} of {First} {Degree} of {Nonroughness} in a {Plane} {Domain}},
journal = {Matemati\v{c}eskie zametki},
pages = {663--669},
publisher = {mathdoc},
volume = {75},
number = {5},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/}
}
TY - JOUR AU - A. Yu. Kolesov AU - A. N. Kulikov AU - N. Kh. Rozov TI - Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain JO - Matematičeskie zametki PY - 2004 SP - 663 EP - 669 VL - 75 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/ LA - ru ID - MZM_2004_75_5_a2 ER -
%0 Journal Article %A A. Yu. Kolesov %A A. N. Kulikov %A N. Kh. Rozov %T Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain %J Matematičeskie zametki %D 2004 %P 663-669 %V 75 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/ %G ru %F MZM_2004_75_5_a2
A. Yu. Kolesov; A. N. Kulikov; N. Kh. Rozov. Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 663-669. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/