Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 663-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the attractors of the boundary-value problem $$ u_t=\sqrt \varepsilon (D_0 + \sqrt \varepsilon D_1)\Delta u + (A_0 + \varepsilon A_1)u + F(u),\qquad u_x|_{x=0,x=l_1} = u_y|_{y=0,y=l_2}=0, $$ where $0\le\varepsilon\ll 1$, $u\in \mathbb{R}^N$, $N\ge 3$, $\Delta $ is the Laplace operator, and $-D_0$ is the Hurwitz matrix. For such a boundary-value problem, under certain assumptions, we establish the existence of any finite fixed number of stable cycles, provided that $\varepsilon>0$ is chosen appropriately small. In other words, it is shown that this boundary-value problem involves the buffer phenomenon.
@article{MZM_2004_75_5_a2,
     author = {A. Yu. Kolesov and A. N. Kulikov and N. Kh. Rozov},
     title = {Attractors of {Singularly} {Perturbed} {Parabolic} {Systems} of {First} {Degree} of {Nonroughness} in a {Plane} {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {663--669},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - A. N. Kulikov
AU  - N. Kh. Rozov
TI  - Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain
JO  - Matematičeskie zametki
PY  - 2004
SP  - 663
EP  - 669
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/
LA  - ru
ID  - MZM_2004_75_5_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A A. N. Kulikov
%A N. Kh. Rozov
%T Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain
%J Matematičeskie zametki
%D 2004
%P 663-669
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/
%G ru
%F MZM_2004_75_5_a2
A. Yu. Kolesov; A. N. Kulikov; N. Kh. Rozov. Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 663-669. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a2/

[1] Kolesov Yu. S., “Dinamika biologicheskikh populyatsii”, Mezhvuz. sb., Gorkovskii un-t, 1984, 28–34

[2] Kolesov Yu. S., “Ob odnoi bifurkatsionnoi teoreme v teorii avtokolebanii raspredelennykh sistem”, Differents. uravneniya, 21:10 (1985), 1709–1713 | MR | Zbl

[3] Kolesov Yu. S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Matem. sb., 184:3 (1993), 121–136 | Zbl

[4] Zakharov A. A., Kolesov Yu. S., Nelineinye kolebaniya i ekologiya, YarGU, Yaroslavl, 1984, 3–15

[5] Kolesov A. Yu., “Bifurkatsiya periodicheskikh reshenii singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Ukr. matem. zhurn., 42:8 (1990), 1037–1042 | MR

[6] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10, URSS, M., 1961, 297–350 | MR | Zbl

[7] Kolesov A. Yu., Rozov N. Kh., “Osobennosti dinamiki uravneniya Ginzburga–Landau v ploskoi oblasti”, TMF, 125:2 (2000), 205–220 | MR | Zbl

[8] Kolesov Yu. S., Kharkov A. E., “Attraktory singulyarno vozmuschennykh sistem tipa reaktsiya-diffuziya s krainei tochkoi povorota v ploskoi oblasti”, Dokl. RAN, 377:2 (2001), 173–175 | MR