Derivative of the Wiener Measure on Trajectories in Compact Lie Groups
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 789-792.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2004_75_5_a15,
     author = {M. Yu. Neklyudov},
     title = {Derivative of the {Wiener} {Measure} on {Trajectories} in {Compact} {Lie} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {789--792},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a15/}
}
TY  - JOUR
AU  - M. Yu. Neklyudov
TI  - Derivative of the Wiener Measure on Trajectories in Compact Lie Groups
JO  - Matematičeskie zametki
PY  - 2004
SP  - 789
EP  - 792
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a15/
LA  - ru
ID  - MZM_2004_75_5_a15
ER  - 
%0 Journal Article
%A M. Yu. Neklyudov
%T Derivative of the Wiener Measure on Trajectories in Compact Lie Groups
%J Matematičeskie zametki
%D 2004
%P 789-792
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a15/
%G ru
%F MZM_2004_75_5_a15
M. Yu. Neklyudov. Derivative of the Wiener Measure on Trajectories in Compact Lie Groups. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 789-792. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a15/

[1] Smolyanov O. G., v. Weizsaecker H., C. R. Acad. Sci. Paris, 321 (1995), 103–108 | MR | Zbl

[2] Smolyanov O. G., Dokl. RAN, 345:4 (1995), 455–458 | MR | Zbl

[3] Ikeda N., Vatanabe S., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | Zbl

[4] Smolyanov O. G., v. Weizsaecker H., J. Funct. Anal., 118 (1993), 454–476 | DOI | MR | Zbl

[5] Smolyanov O. G., fon Vaitszekker Kh., UMN, 51:2 (1996), 357–358 | MR | Zbl

[6] Smolyanov O. G., v. Weizsaecker H., Inf. Dim. Anal. Quant. Prob., 2:1 (1999), 51–79 | DOI | MR

[7] Sidorova N. A., Smolyanov O. G., v. Weizsaecker H., Wittich O., “The surface limit of Brownian motion in tubular neighbourhoods of an embedded Riemannian manifold”, 2003 (to appear) | Zbl