Estimate of the Norm of a Polyanalytic Function via the Norm of Its Polyharmonic Component
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 608-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an estimate of the norm of a polyanalytic function belonging to the space $L_p(D,\alpha)$, $1\le p\infty$, $\alpha>-1$, via the norm of its polyharmonic component.
@article{MZM_2004_75_4_a9,
     author = {A. K. Ramazanov},
     title = {Estimate of the {Norm} of a {Polyanalytic} {Function} via the {Norm} of {Its} {Polyharmonic} {Component}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {608--613},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a9/}
}
TY  - JOUR
AU  - A. K. Ramazanov
TI  - Estimate of the Norm of a Polyanalytic Function via the Norm of Its Polyharmonic Component
JO  - Matematičeskie zametki
PY  - 2004
SP  - 608
EP  - 613
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a9/
LA  - ru
ID  - MZM_2004_75_4_a9
ER  - 
%0 Journal Article
%A A. K. Ramazanov
%T Estimate of the Norm of a Polyanalytic Function via the Norm of Its Polyharmonic Component
%J Matematičeskie zametki
%D 2004
%P 608-613
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a9/
%G ru
%F MZM_2004_75_4_a9
A. K. Ramazanov. Estimate of the Norm of a Polyanalytic Function via the Norm of Its Polyharmonic Component. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 608-613. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a9/

[1] Balk M. B., Polyanalytic Functions, Akad. Verlag, Berlin, 1991 | Zbl

[2] Ramazanov A. K., “Ob ortogonalnykh proektorakh v prostranstvakh polianaliticheskikh funktsii”, Izv. TulGU. Ser. matem., mekh., informatika, 4:1 (1998), 117–122 | MR

[3] Ramazanov A. K., “Predstavlenie prostranstva polianaliticheskikh funktsii v vide pryamoi summy ortogonalnykh podprostranstv. Prilozhenie k ratsionalnym approksimatsiyam”, Matem. zametki, 66:5 (1999), 741–759 | MR | Zbl

[4] Ramazanov A. K., “O stroenii prostranstv polianaliticheskikh funktsii”, Matem. zametki, 72:5 (2002), 750–764 | MR | Zbl

[5] Dolzhenko E. P., “O granichnom povedenii komponent polianaliticheskoi funktsii”, Matem. zametki, 63:6 (1998), 821–834 | MR | Zbl

[6] Dolzhenko E. P., Danchenko V. I., “O granichnom povedenii reshenii obobschennogo uravneniya Koshi–Rimana”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 3, 16–25 | MR | Zbl

[7] Duren P. L., Shields A. L., “Properties of $H^p$ $(0

1)$ and its containing Banach space”, Trans. Amer. Math. Soc., 141 (1969), 255–262 | DOI | MR | Zbl

[8] Shamoyan F. A., “Prilozheniya integralnykh predstavlenii Dzhrbashyana k nekotorym zadacham analiza”, Dokl. AN SSSR, 261:3 (1981), 557–561 | MR | Zbl

[9] Burbea J., “The Bergman projection over plane regions”, Ark. Mat., 18:2 (1980), 207–221 | DOI | MR | Zbl

[10] Solovev A. A., “Otsenki v $L^p$ integralnykh operatorov, svyazannykh s prostranstvami analiticheskikh i garmonicheskikh funktsii”, Sib. matem. zh., 26:3 (1985), 168–191 | MR | Zbl

[11] Ramazanov A. K., “Otsenka normy polianaliticheskoi funktsii cherez normu ee poligarmonicheskoi sostavlyayuschei”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokl., VGU, Voronezh, 1999, 163

[12] Ramazanov A. K., “Otsenka normy polianaliticheskoi funktsii cherez normu ee poligarmonicheskoi sostavlyayuschei”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokl. 11-i Saratovskoi zimnei shkoly, SGU, Saratov, 2002, 166–167

[13] Koshelev A. D., “O kern-funktsii dlya gilbertova prostranstva polianaliticheskikh funktsii v kruge”, Dokl. AN SSSR, 232:2 (1977), 277–279 | MR | Zbl

[14] Vasin A. V., “Proektory na $L_p$-prostranstva polianaliticheskikh funktsii”, Zapiski nauch. sem. LOMI, 190, Nauka, L., 1991, 15–33

[15] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | Zbl