Asymptotics of Kink--Kink Interaction for Sine-Gordon Type Equations
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 603-607.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of semilinear wave equations with a small parameter $\varepsilon$. The nonlinearity of $F(u)$ is assumed to be such that the corresponding equation has an exact self-similar solution of kink type. For $F(u)$, we obtain sufficient conditions for two kinks to interact (in the sense of the leading term of the asymptotics with respect to $\varepsilon$) in the same way as the kinks of the sine-Gordon equation.
@article{MZM_2004_75_4_a8,
     author = {G. A. Omel'yanov and D. A. Kulagin},
     title = {Asymptotics of {Kink--Kink} {Interaction} for {Sine-Gordon} {Type} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--607},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a8/}
}
TY  - JOUR
AU  - G. A. Omel'yanov
AU  - D. A. Kulagin
TI  - Asymptotics of Kink--Kink Interaction for Sine-Gordon Type Equations
JO  - Matematičeskie zametki
PY  - 2004
SP  - 603
EP  - 607
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a8/
LA  - ru
ID  - MZM_2004_75_4_a8
ER  - 
%0 Journal Article
%A G. A. Omel'yanov
%A D. A. Kulagin
%T Asymptotics of Kink--Kink Interaction for Sine-Gordon Type Equations
%J Matematičeskie zametki
%D 2004
%P 603-607
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a8/
%G ru
%F MZM_2004_75_4_a8
G. A. Omel'yanov; D. A. Kulagin. Asymptotics of Kink--Kink Interaction for Sine-Gordon Type Equations. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 603-607. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a8/

[1] Zakharov V. E., Takhtadzhan L. A., Faddeev L. D., “Polnoe opisanie reshenii uravneniya sine-Gordon”, Dokl. AN SSSR, 219 (1974), 1334–1337 | MR | Zbl

[2] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–104 | MR

[3] Maslov V. P., Omel'yanov G. A., Geometric Asymptotics for Nonlinear PDE, V. I, Amer. Math. Soc., Providence, RI, 2001 | Zbl

[4] Danilov V. G., Omel'yanov G. A., Radkevich E. V., “Hugoniot-type conditions and weak solutions to the phase field system”, Europ. J. Appl. Math., 10 (1999), 55–77 | DOI | MR | Zbl

[5] Maslov V. P., “Tri algebry, sootvetstvuyuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, UMN, 35:2 (1980), 252–253

[6] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei singulyarnykh reshenii kvazilineinykh strogo giperbolicheskikh sistem pervogo poryadka”, TMF, 114:1 (1998), 3–55 | MR | Zbl

[7] Danilov V. G., Shelkovich V. M., “Propagation and interaction of shock waves of quasilinear equation”, Nonlinear Studies, 8 (2001), 135–170 | MR

[8] Danilov V. G., “Generalized solutions describing singularity interaction”, Intern. J. Math. Math. Sci., 30 (2002), 1–14 | DOI | MR

[9] Danilov V. G., Omel'yanov G. A., Shelkovich V. M., “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl. Ser. 2, 208, ed. M. V. Karasev, Amer. Math. Soc., Providence, RI, 2003, 33–164 | MR