Approximation by Piecewise Constant Functions on a Square
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 592-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider several algorithms for approximating functions defined on the unit square ${\mathbf I}= [0,1]^2$ and ranging in $\mathbb{R}^2$. We use functions of zeroth-order Lagrange spline type as the approximation apparatus. They differ from the standard Lagrange splines on the plane by the rule for choosing grid lines according to which the spline is constructed; namely, a set of one-dimensional splines is used instead of a family of parallel lines determining the interpolation nodes.
@article{MZM_2004_75_4_a7,
     author = {A. S. Kochurov},
     title = {Approximation by {Piecewise} {Constant} {Functions} on a {Square}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--602},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a7/}
}
TY  - JOUR
AU  - A. S. Kochurov
TI  - Approximation by Piecewise Constant Functions on a Square
JO  - Matematičeskie zametki
PY  - 2004
SP  - 592
EP  - 602
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a7/
LA  - ru
ID  - MZM_2004_75_4_a7
ER  - 
%0 Journal Article
%A A. S. Kochurov
%T Approximation by Piecewise Constant Functions on a Square
%J Matematičeskie zametki
%D 2004
%P 592-602
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a7/
%G ru
%F MZM_2004_75_4_a7
A. S. Kochurov. Approximation by Piecewise Constant Functions on a Square. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 592-602. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a7/

[1] Kochurov A. S., “Approximation by piecewise constant functions on the square”, East J. Approximations, 1:4 (1995), 463–478 | MR | Zbl