Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 580-591
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary behavior of convolutions with Poisson kernel and with square root of the Poisson kernel is essentially different. The former has only a nontangential limit. The latter involves convergence over domains admitting the logarithmic order of tangency with the boundary (P. Sjögren, J.-O. Rönning). This result was generalized by the authors to spaces of homogeneous type. Here we prove the boundedness in $L^p$, $p > 1$, of the corresponding maximal operator. Only a weak-type inequality was known before.
@article{MZM_2004_75_4_a6,
author = {V. G. Krotov and I. N. Katkovskaya},
title = {Strong-Type {Inequality} for {Convolution} with {Square} {Root} of the {Poisson} {Kernel}},
journal = {Matemati\v{c}eskie zametki},
pages = {580--591},
publisher = {mathdoc},
volume = {75},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/}
}
TY - JOUR AU - V. G. Krotov AU - I. N. Katkovskaya TI - Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel JO - Matematičeskie zametki PY - 2004 SP - 580 EP - 591 VL - 75 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/ LA - ru ID - MZM_2004_75_4_a6 ER -
V. G. Krotov; I. N. Katkovskaya. Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 580-591. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/