Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 580-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary behavior of convolutions with Poisson kernel and with square root of the Poisson kernel is essentially different. The former has only a nontangential limit. The latter involves convergence over domains admitting the logarithmic order of tangency with the boundary (P. Sjögren, J.-O. Rönning). This result was generalized by the authors to spaces of homogeneous type. Here we prove the boundedness in $L^p$, $p > 1$, of the corresponding maximal operator. Only a weak-type inequality was known before.
@article{MZM_2004_75_4_a6,
     author = {V. G. Krotov and I. N. Katkovskaya},
     title = {Strong-Type {Inequality} for {Convolution} with {Square} {Root} of the {Poisson} {Kernel}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {580--591},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/}
}
TY  - JOUR
AU  - V. G. Krotov
AU  - I. N. Katkovskaya
TI  - Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
JO  - Matematičeskie zametki
PY  - 2004
SP  - 580
EP  - 591
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/
LA  - ru
ID  - MZM_2004_75_4_a6
ER  - 
%0 Journal Article
%A V. G. Krotov
%A I. N. Katkovskaya
%T Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel
%J Matematičeskie zametki
%D 2004
%P 580-591
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/
%G ru
%F MZM_2004_75_4_a6
V. G. Krotov; I. N. Katkovskaya. Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 580-591. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a6/

[1] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[2] Littlewood J. E., “On a theorem of Fatou”, J. London Math. Soc., 2 (1927), 172–176 | DOI | Zbl

[3] Sjögren P., “Une remarque sur la convergence des fonctions propres du Laplasian à valeur propre critique”, Lecture Notes in Math., 1096, Springer, Berlin, 1984, 544–548

[4] Sjögren P., “Convergence results for the square root of the Poisson kernel”, Pacific J. Math., 131 (1988), 361–391 | MR | Zbl

[5] Rönning J.-O., Convergence results for the square root of the Poisson kernel, Ph. D. Thesis, Chalmers Univ. Tehnology, Göteborg, 1993

[6] Rönning J.-O., “Convergence results for the square root of the Poisson kernel”, Math. Scand., 81 (1997), 219–235 | MR | Zbl

[7] Sjögren P., “Approach regions for the square root of the Poisson kernel and bounded functions”, Bull. Austral. Math. Soc., 55 (1997), 521–527 | DOI | MR | Zbl

[8] Katkovskaya I. N., Krotov V. G., “O kasatelnom granichnom povedenii potentsialov”, Tr. IM NAN Belarusi, 5 (2000), 80–83 | MR | Zbl

[9] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[10] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. MIAN, 190, Nauka, M., 1989, 117–138 | MR

[11] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[12] Rudin U., Teoriya funktsii v edinichnom share v $\mathbb C^n$, Mir, M., 1984 | Zbl