RUC Bases and the Olevskii System
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 566-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the RUC-basis properties of the Olevskii system in rearrangement-invariant spaces. In particular, it is proved that the Olevskii system forms an RUC basis in $L_p[0,1]$ if and only if $2\le p\infty$.
@article{MZM_2004_75_4_a5,
     author = {K. S. Kazarian and E. M. Semenov},
     title = {RUC {Bases} and the {Olevskii} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {566--579},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a5/}
}
TY  - JOUR
AU  - K. S. Kazarian
AU  - E. M. Semenov
TI  - RUC Bases and the Olevskii System
JO  - Matematičeskie zametki
PY  - 2004
SP  - 566
EP  - 579
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a5/
LA  - ru
ID  - MZM_2004_75_4_a5
ER  - 
%0 Journal Article
%A K. S. Kazarian
%A E. M. Semenov
%T RUC Bases and the Olevskii System
%J Matematičeskie zametki
%D 2004
%P 566-579
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a5/
%G ru
%F MZM_2004_75_4_a5
K. S. Kazarian; E. M. Semenov. RUC Bases and the Olevskii System. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 566-579. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a5/

[1] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. Function Spaces, Springer, Berlin, 1979 | Zbl

[2] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978

[3] Billard P., Kwapien S., Pelczynski A., Samuel C., “Biorthogonal systems of random unconditional convergence in Banach spaces”, Functional Analysis Seminar 1985–1986, Longhorn Notes, Univ. Texas, Austin, 1986, 13–35 | MR

[4] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999

[5] Novikov I., Semenov E., Haar Series and Linear Operators, Kluwer, Dordrecht, 1997 | Zbl

[6] Olevskii A. M., “Ob odnoi ortonormalnoi sisteme i ee primeneniyakh”, Matem. sb., 71(113):3 (1966), 297–336 | MR | Zbl

[7] Kazaryan K. S., “O nekotorykh zadachakh teorii ortogonalnykh ryadov”, Matem. sb., 119:2 (1982), 278–294 | MR | Zbl

[8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. Sequence Spaces, Springer, Berlin, 1977

[9] Carothers N. L., Dilworth S. J., “Geometry of Lorentz spaces via interpolation”, Functional Analysis Seminar 1985–1986, Longhorn Notes, Univ. Texas, Austin, 1986, 107–133

[10] Dodds P. G., Semenov E. M., Sukochev F. A., “RUC-systems in rearrangement invariant spaces”, Studia Math., 151:2 (2002), 161–173 | DOI | MR | Zbl