Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_4_a0, author = {K. L. Avetisyan}, title = {Inequalities of {Littlewood--Paley} {Type} for $n${-Harmonic} {Functions} on the {Polydisk}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--492}, publisher = {mathdoc}, volume = {75}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/} }
K. L. Avetisyan. Inequalities of Littlewood--Paley Type for $n$-Harmonic Functions on the Polydisk. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/
[1] Littlewood J. E., Paley R. E. A. C., “Theorems on Fourier series and power series. I; II”, J. London Math. Soc., 6 (1931), 230–233 ; Proc. London Math. Soc. Ser. 2, 42 (1936), 52–89 | DOI | Zbl | DOI | Zbl
[2] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965 | MR
[3] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[4] Flett T. M., “Mean values of power series”, Pacific J. Math., 25 (1968), 463–494 | MR | Zbl
[5] Littlewood J. E., Some Problems in Real and Complex Analysis, Raytheon Education Company, Massachusetts, 1968 | MR | Zbl
[6] Zygmund A., “On the boundary values of functions of several complex variables, I”, Fund. Math., 36 (1949), 207–235 | MR | Zbl
[7] Gundy R., Stein E. M., “$H^p$ theory for the poly-disc”, Proc. Nat. Acad. Sci. USA, 76:3 (1979), 1026–1029 | DOI | MR | Zbl
[8] Benedek A., Panzone R., “The spaces $L^p$ with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR | Zbl
[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl