Inequalities of Littlewood--Paley Type for $n$-Harmonic Functions on the Polydisk
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 483-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n$-harmonic functions on the unit polydisk in the space $\mathbb C^n$ we define $g$-functions of Littlewood–Paley type and establish $L^p$-inequalities related to them. In the present paper, the main theorems deal with the extension of results of Littlewood, Paley, and Flett to the polydisk and their generalizion to fractional derivatives of arbitrary order. This gives an answer to a question posed by Littlewood.
@article{MZM_2004_75_4_a0,
     author = {K. L. Avetisyan},
     title = {Inequalities of {Littlewood--Paley} {Type} for $n${-Harmonic} {Functions} on the {Polydisk}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--492},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/}
}
TY  - JOUR
AU  - K. L. Avetisyan
TI  - Inequalities of Littlewood--Paley Type for $n$-Harmonic Functions on the Polydisk
JO  - Matematičeskie zametki
PY  - 2004
SP  - 483
EP  - 492
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/
LA  - ru
ID  - MZM_2004_75_4_a0
ER  - 
%0 Journal Article
%A K. L. Avetisyan
%T Inequalities of Littlewood--Paley Type for $n$-Harmonic Functions on the Polydisk
%J Matematičeskie zametki
%D 2004
%P 483-492
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/
%G ru
%F MZM_2004_75_4_a0
K. L. Avetisyan. Inequalities of Littlewood--Paley Type for $n$-Harmonic Functions on the Polydisk. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a0/

[1] Littlewood J. E., Paley R. E. A. C., “Theorems on Fourier series and power series. I; II”, J. London Math. Soc., 6 (1931), 230–233 ; Proc. London Math. Soc. Ser. 2, 42 (1936), 52–89 | DOI | Zbl | DOI | Zbl

[2] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965 | MR

[3] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[4] Flett T. M., “Mean values of power series”, Pacific J. Math., 25 (1968), 463–494 | MR | Zbl

[5] Littlewood J. E., Some Problems in Real and Complex Analysis, Raytheon Education Company, Massachusetts, 1968 | MR | Zbl

[6] Zygmund A., “On the boundary values of functions of several complex variables, I”, Fund. Math., 36 (1949), 207–235 | MR | Zbl

[7] Gundy R., Stein E. M., “$H^p$ theory for the poly-disc”, Proc. Nat. Acad. Sci. USA, 76:3 (1979), 1026–1029 | DOI | MR | Zbl

[8] Benedek A., Panzone R., “The spaces $L^p$ with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR | Zbl

[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl