Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 405-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function $$ E_\rho(z;\mu)=\sum_{n=0}^\infty \frac{z^n}{\Gamma(\mu+n/\rho)}, \qquad \rho>0, \qquad \mu\in\mathbb C, $$ for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
@article{MZM_2004_75_3_a7,
     author = {A. M. Sedletskii},
     title = {Nonasymptotic {Properties} of {Roots} of a {Mittag-Leffler} {Type} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--420},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
JO  - Matematičeskie zametki
PY  - 2004
SP  - 405
EP  - 420
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/
LA  - ru
ID  - MZM_2004_75_3_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
%J Matematičeskie zametki
%D 2004
%P 405-420
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/
%G ru
%F MZM_2004_75_3_a7
A. M. Sedletskii. Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 405-420. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/

[1] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[2] Mittag–Leffler G. M., “Sur la nouvelle fonction $E_\alpha(x)$”, C. R. Acad. Sci. Paris. Ser. 2, 137 (1903), 554–558

[3] Sedletskii A. M., “Asimptoticheskie formuly dlya nulei funktsii tipa Mittag-Lefflera”, Anal. Math., 20 (1994), 117–132 | DOI | MR | Zbl

[4] Wiman A., “Über die Nullstellen der Funktionen $E_\alpha(x)$”, Acta Math., 29 (1905), 217–234 | DOI | MR | Zbl

[5] Polya G., “Bemerkung über die Mittag-Lefflerschen Funktionen $E_\alpha(z)$”, Tôhoku Math. J., 19 (1921), 241–248 | Zbl

[6] Dzhrbashyan M. M., “Interpolyatsionnye i spektralnye razlozheniya, assotsiirovannye s differentsialnymi operatorami drobnogo poryadka”, Izv. AN ArmSSR. Matem., 19 (1984), 81–181 | MR | Zbl

[7] Djrbashian M. M., Harmonic analysis and boundary value problems in the complex domain, Birkhäuser Verlag, Basel–Boston–Berlin, 1993 | MR | Zbl

[8] Ostrovskiǐ I. V., Peresyolkova I. N., “Nonasymptotic results on distribution of zeros of the function $E_\rho(z;\mu)$”, Anal. Math., 23 (1997), 283–296 | DOI | MR | Zbl

[9] Popov A. Yu., “On the Ostrovskii–Peresyolkova conjecture about zeros of the Mittag–Leffler functions”, Proc. Steklov Inst. Math., Suppl. 1, 2001, 167–182 | MR

[10] Popov A. Yu., “O spektralnykh znacheniyakh odnoi kraevoi zadachi i nulyakh funktsii Mittag-Lefflera”, Differents. uravneniya, 38:5 (2002), 611–621 | MR | Zbl

[11] Dzhrbashyan M. M., Nersesyan A. B., “O postroenii nekotorykh spetsialnykh biortogonalnykh sistem”, Izv. AN ArmSSR. Matem., 12 (1959), 17–42 | MR

[12] Sedletskii A. M., “O nulyakh funktsii tipa Mittag-Lefflera”, Matem. zametki, 68:5 (2000), 710–724 | MR

[13] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Izd-vo KBNTs RAN, Nalchik, 2000

[14] Sedletskii A. M., “Approksimativnye svoistva sistem eksponent na pryamoi i polupryamoi”, Matem. sb., 189 (1998), 125–140 | MR

[15] Tikhonov I. Z., Eidelman Yu. S., “Obratnaya zadacha dlya differentsialnogo uravneniya v banakhovom prostranstve i raspredelenie nulei tseloi funktsii tipa Mittag-Lefflera”, Differents. uravneniya, 38:5 (2002), 637–644 | MR | Zbl

[16] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 1, Nauka, M., 1967

[17] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 1, Nauka, M., 1978