Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 405-420

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely solve the problem of finding the number of positive and nonnegative roots of the Mittag-Leffler type function $$ E_\rho(z;\mu)=\sum_{n=0}^\infty \frac{z^n}{\Gamma(\mu+n/\rho)}, \qquad \rho>0, \qquad \mu\in\mathbb C, $$ for $\rho>1$ and $\mu\in\mathbb R$. We prove that there are no roots in the left angular sector $\pi/\rho\le|\arg z|\le\pi$ for $\rho>1$ and $1\le\mu1+1/\rho$. We consider the problem of multiple roots; in particular, we show that the classical Mittag-Leffler function $E_n(z;1)$ of integer order does not have multiple roots.
@article{MZM_2004_75_3_a7,
     author = {A. M. Sedletskii},
     title = {Nonasymptotic {Properties} of {Roots} of a {Mittag-Leffler} {Type} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--420},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
JO  - Matematičeskie zametki
PY  - 2004
SP  - 405
EP  - 420
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/
LA  - ru
ID  - MZM_2004_75_3_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function
%J Matematičeskie zametki
%D 2004
%P 405-420
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/
%G ru
%F MZM_2004_75_3_a7
A. M. Sedletskii. Nonasymptotic Properties of Roots of a Mittag-Leffler Type Function. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 405-420. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a7/