Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 384-391

Voir la notice de l'article provenant de la source Math-Net.Ru

A second-order equation can have singular sets of first and second type, $S_1$ and $S_2$ (see the introduction), where the integral curve $x(y)$ does not exist in the ordinary sense but where it can be extended by using the first integral [1–5]. Denote by $Y$ the Cartesian axis $y=0$. If the function $x(y)$ has a derivative at a point of local extremum of this function, then this point belongs to $S_1\cup Y$. The extrema at which $y'(x)$ does not exist can be placed on $S_2$. In [5–8], the stability and instability of extrema on $S_1\cup S_2$ under small perturbations of the equation were considered, and the stability of the mutual arrangement of the maxima and minima of x(y) on the singular set was studied (locally as a rule, i.e., in small neighborhoods of singular points). In the present paper, sufficient conditions for the preservation of type of a local extremum on the finite part of $S_1$ or $S_2$ are found for the case in which the perturbation on all of this part does not exceed some explicitly indicated quantity which is the same on the entire singular set.
@article{MZM_2004_75_3_a5,
     author = {I. P. Pavlotsky and M. Strianese},
     title = {Uniform {Stability} of {Local} {Extrema} of an {Integral} {Curve} of an {ODE} of {Second} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {384--391},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/}
}
TY  - JOUR
AU  - I. P. Pavlotsky
AU  - M. Strianese
TI  - Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
JO  - Matematičeskie zametki
PY  - 2004
SP  - 384
EP  - 391
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/
LA  - ru
ID  - MZM_2004_75_3_a5
ER  - 
%0 Journal Article
%A I. P. Pavlotsky
%A M. Strianese
%T Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
%J Matematičeskie zametki
%D 2004
%P 384-391
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/
%G ru
%F MZM_2004_75_3_a5
I. P. Pavlotsky; M. Strianese. Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 384-391. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/