Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 384-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

A second-order equation can have singular sets of first and second type, $S_1$ and $S_2$ (see the introduction), where the integral curve $x(y)$ does not exist in the ordinary sense but where it can be extended by using the first integral [1–5]. Denote by $Y$ the Cartesian axis $y=0$. If the function $x(y)$ has a derivative at a point of local extremum of this function, then this point belongs to $S_1\cup Y$. The extrema at which $y'(x)$ does not exist can be placed on $S_2$. In [5–8], the stability and instability of extrema on $S_1\cup S_2$ under small perturbations of the equation were considered, and the stability of the mutual arrangement of the maxima and minima of x(y) on the singular set was studied (locally as a rule, i.e., in small neighborhoods of singular points). In the present paper, sufficient conditions for the preservation of type of a local extremum on the finite part of $S_1$ or $S_2$ are found for the case in which the perturbation on all of this part does not exceed some explicitly indicated quantity which is the same on the entire singular set.
@article{MZM_2004_75_3_a5,
     author = {I. P. Pavlotsky and M. Strianese},
     title = {Uniform {Stability} of {Local} {Extrema} of an {Integral} {Curve} of an {ODE} of {Second} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {384--391},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/}
}
TY  - JOUR
AU  - I. P. Pavlotsky
AU  - M. Strianese
TI  - Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
JO  - Matematičeskie zametki
PY  - 2004
SP  - 384
EP  - 391
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/
LA  - ru
ID  - MZM_2004_75_3_a5
ER  - 
%0 Journal Article
%A I. P. Pavlotsky
%A M. Strianese
%T Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order
%J Matematičeskie zametki
%D 2004
%P 384-391
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/
%G ru
%F MZM_2004_75_3_a5
I. P. Pavlotsky; M. Strianese. Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 384-391. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a5/

[1] Pavlotskii I. P., Strianeze M., Toskano R., “Prodolzhenie resheniya differentsialnogo uravneniya na singulyarnoe mnozhestvo”, Differents. uravneniya, 34:3 (1998), 313–319 | MR

[2] Pavlotsky I. P., Strianese M., Toscano R., “Prolongation of the integral curve on the singular set via the first integral”, J. Interdisciplinary Math., 2:2, 3 (1999), 101–119 | MR | Zbl

[3] Pavlotsky I. P., Strianese M., Nonlinear Analysis, 2002, no. 43, 4313–4317 | MR

[4] Pavlotsky I. P., Strianese M., Preprint No 1 of Univ. of Salerno, Italy, 2002 | MR | Zbl

[5] Pavlotskii I. P., Sadovnikov B. I., Strianeze M., Dokl. RAN, 383:3 (2002), 311–313

[6] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva dinamicheskoi sistemy”, Differents. uravneniya, 35:3 (1999), 296–303 | MR

[7] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva obyknovennykh differentsialnykh uravnenii vtorogo poryadka otnositelno $\varepsilon x$- i $\varepsilon y$-vozmuschenii.”, Dokl. NAN Ukrainy, 2002 (to appear)

[8] Pavlotskii I. P., Strianeze M., “O lokalnoi ustoichivosti ekstremumov integralnykh krivykh ODU vtorogo poryadka”, Mat. zametki, 71:5 (2002), 742–753 | MR

[9] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, M., 1990 | MR | Zbl

[10] Kaplun Yu., Samoilenko V. Hr., Pavlotsky I. P., Strianese M., “The global theorem on implicit function and its application in the theory of ordinary differential equations”, Dokl. NAN Ukrainy, 2001, no. 6, 38–41 | MR | Zbl

[11] Sansone G., Conti R., Equazioni differenziale non lineari, Cremonese, Roma, 1956 | MR | Zbl

[12] Pavlotsky I. P., Vilasi G., Physica A, 214 (1995), 68–81 | DOI