On the Trace of a Perturbed Operator Semigroup
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 462-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2004_75_3_a15,
     author = {V. E. Podolskii},
     title = {On the {Trace} of a {Perturbed} {Operator} {Semigroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {462--466},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a15/}
}
TY  - JOUR
AU  - V. E. Podolskii
TI  - On the Trace of a Perturbed Operator Semigroup
JO  - Matematičeskie zametki
PY  - 2004
SP  - 462
EP  - 466
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a15/
LA  - ru
ID  - MZM_2004_75_3_a15
ER  - 
%0 Journal Article
%A V. E. Podolskii
%T On the Trace of a Perturbed Operator Semigroup
%J Matematičeskie zametki
%D 2004
%P 462-466
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a15/
%G ru
%F MZM_2004_75_3_a15
V. E. Podolskii. On the Trace of a Perturbed Operator Semigroup. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 462-466. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a15/

[1] Ichinose T., Tamura H., Asymptot. Anal., 17 (1998), 239–266 | MR | Zbl

[2] Takanobu S., Osaka J. Math., 35:3 (1998), 659–682 | MR | Zbl

[3] Simon B., Bull. AMS, 7:3 (1982), 447–526 | DOI | MR | Zbl

[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[6] Podolskii V. E., Vestnik MGU. Ser. 1, 1999, no. 5, 42–48 | MR | Zbl

[7] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[8] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl

[9] Gilkey P. B., Branson T. P., “Asymptotics of the Laplacian on a manifold with boundary”, Comm. in Part. Diff. Equat., 15:2 (1990), 245–272 | DOI | MR | Zbl