General Lebesgue Constants for Linear Mean Subsequences of Fourier Sums
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 435-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple sufficient conditions for the boundedness of the norms of the general matrix operators constructed from the subsequences of partial sums of trigonometric Fourier series with polynomial order of growth are obtained. They guarantee a particular rate of approximation for subclasses of continuous functions.
@article{MZM_2004_75_3_a10,
     author = {L. P. Falaleev},
     title = {General {Lebesgue} {Constants} for {Linear} {Mean} {Subsequences} of {Fourier} {Sums}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {435--443},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a10/}
}
TY  - JOUR
AU  - L. P. Falaleev
TI  - General Lebesgue Constants for Linear Mean Subsequences of Fourier Sums
JO  - Matematičeskie zametki
PY  - 2004
SP  - 435
EP  - 443
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a10/
LA  - ru
ID  - MZM_2004_75_3_a10
ER  - 
%0 Journal Article
%A L. P. Falaleev
%T General Lebesgue Constants for Linear Mean Subsequences of Fourier Sums
%J Matematičeskie zametki
%D 2004
%P 435-443
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a10/
%G ru
%F MZM_2004_75_3_a10
L. P. Falaleev. General Lebesgue Constants for Linear Mean Subsequences of Fourier Sums. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 435-443. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a10/

[1] Bugrov Ya. S., “Usloviya ravnomernoi ogranichennosti trigonometricheskikh polinomov v metrike $L$”, Tr. MIAN, 134, Nauka, M., 1975, 31–37 | MR | Zbl

[2] Bugrov Ja. S., “On linear summation methods of Fourier series”, Analysis Math., 5:2 (1979), 119–133 | DOI | MR | Zbl

[3] Bugrov Ya. S., “Lineinye srednie ryadov i integralov Fure i skorost ikh skhodimosti”, Tr. MIAN, 170, Nauka, M., 1984, 77–85 | MR | Zbl

[4] Falaleev L. P., Approksimativnye svoistva lineinykh srednikh ryadov Fure, Avtoreferat diss. $\dots$ d.f.-m.n., Almaty, 1993

[5] Baskakov A. V., Lineinye operatory v teorii priblizheniya funktsii, Avtoreferat diss. $\dots$ d.f.-m.n., Tbilisi, 1987

[6] Baskakov A. V., Priblizhenie funktsii lineinymi metodami, Avtoreferat diss. $\dots$ k.f.-m.n., M., 1987

[7] Syusyukalov A. I., “O priblizhenii funktsii klassa $C(\varepsilon)$ srednimi podposledovatelnostei summ Fure”, Izv. Vuzov. Matem., 1998, no. 5, 78–79 | MR

[8] Belinskii E. S., “O summiruemosti ryadov Fure metodom srednikh arifmeticheskikh s propuskami”, Trudy Mezhdunar. Konf. po teorii priblizheniya funktsii (Kiev, 30 maya – 6 iyunya 1983 g.), Nauka, M., 1987, 48–49

[9] Belinskii E. S., “On the summability of Fourier series with the method of lacunary arithmetic means”, Analysis Math., 10 (1984), 275–282 | DOI | MR

[10] Trigub R. M., Summiruemost ryadov Fure i nekotorye voprosy teorii priblizhenii, Avtoreferat diss. $\dots$ d.f.-m.n., Kiev, 1987

[11] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1966

[12] Bliev N. K., Falaleev L. P., “Rate of convergence of linear mean subsequencies of Fourier sums”, Topics in polynomials of one and several variables and their applications, World Scientific publishing, Singapore, 1993, 65–79 | MR | Zbl

[13] Falaleev L. P., “Approksimativnye svoistva podposledovatelnostei summ Fure”, Vestn. NAN RK, 1995, no. 3, 51–57 | MR

[14] Baskakov V. A., “O poryadke priblizheniya nepreryvnykh funktsii nekotorymi lineinymi metodami summirovaniya ryadov Fure”, Izv. vuzov. Matem., 1969, no. 7, 20–27 | MR | Zbl