Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 236-252

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the method of matching asymptotic expansions is used to construct an asymptotics (in a small parameter) of the eigenvalues and eigenfunctions of the Laplace operator in a domain when the boundary-condition type changes on a narrow flattened strip, provided that on the narrow strip of the boundary a Neumann condition is given and on the remaining part of the boundary a Dirichlet condition is given. The width of the strip is taken as the small parameter.
@article{MZM_2004_75_2_a6,
     author = {M. Yu. Planida},
     title = {Asymptotics of the {Eigenelements} of the {Laplace} {Operator} when the {Boundary-Condition} {Type} {Changes} on a {Narrow} {Flattened} {Strip}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {236--252},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a6/}
}
TY  - JOUR
AU  - M. Yu. Planida
TI  - Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip
JO  - Matematičeskie zametki
PY  - 2004
SP  - 236
EP  - 252
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a6/
LA  - ru
ID  - MZM_2004_75_2_a6
ER  - 
%0 Journal Article
%A M. Yu. Planida
%T Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip
%J Matematičeskie zametki
%D 2004
%P 236-252
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a6/
%G ru
%F MZM_2004_75_2_a6
M. Yu. Planida. Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 236-252. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a6/