Commutative Subalgebras of Quantum Algebras
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, a general assertion is proved, claiming that, for every associative algebra $\mathscr A$ without zero divisors which admits a valuation and a seminorm concordant with the valuation, the transcendence degree of an arbitrary commutative subalgebra does not exceed the maximal number of independent pairwise pseudocommuting elements of some basis of the algebra $\mathscr A$. The author shows that for such a algebra $\mathscr A$ one can take an arbitrary algebra of quantum Laurent polynomials, quantum analogs of the Weyl algebra, and also some universal coacting algebras. In the case of the algebra $\mathscr L$ of quantum Laurent polynomials, it is proved that the transcendence degree of a maximal commutative subalgebra of $\mathscr L$ coincides with the maximal number of independent pairwise commuting elements of the monomial basis of the algebra $\mathscr L$.
@article{MZM_2004_75_2_a4,
author = {S. A. Zelenova},
title = {Commutative {Subalgebras} of {Quantum} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {208--221},
publisher = {mathdoc},
volume = {75},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/}
}
S. A. Zelenova. Commutative Subalgebras of Quantum Algebras. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/