Commutative Subalgebras of Quantum Algebras
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a general assertion is proved, claiming that, for every associative algebra $\mathscr A$ without zero divisors which admits a valuation and a seminorm concordant with the valuation, the transcendence degree of an arbitrary commutative subalgebra does not exceed the maximal number of independent pairwise pseudocommuting elements of some basis of the algebra $\mathscr A$. The author shows that for such a algebra $\mathscr A$ one can take an arbitrary algebra of quantum Laurent polynomials, quantum analogs of the Weyl algebra, and also some universal coacting algebras. In the case of the algebra $\mathscr L$ of quantum Laurent polynomials, it is proved that the transcendence degree of a maximal commutative subalgebra of $\mathscr L$ coincides with the maximal number of independent pairwise commuting elements of the monomial basis of the algebra $\mathscr L$.
@article{MZM_2004_75_2_a4,
     author = {S. A. Zelenova},
     title = {Commutative {Subalgebras} of {Quantum} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {208--221},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/}
}
TY  - JOUR
AU  - S. A. Zelenova
TI  - Commutative Subalgebras of Quantum Algebras
JO  - Matematičeskie zametki
PY  - 2004
SP  - 208
EP  - 221
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/
LA  - ru
ID  - MZM_2004_75_2_a4
ER  - 
%0 Journal Article
%A S. A. Zelenova
%T Commutative Subalgebras of Quantum Algebras
%J Matematičeskie zametki
%D 2004
%P 208-221
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/
%G ru
%F MZM_2004_75_2_a4
S. A. Zelenova. Commutative Subalgebras of Quantum Algebras. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/

[1] Artamonov V. A., Cohn P. M., “The skew field of rational functions on the quantum plane”, J. Math. Sci., 93:6 (1999), 824–829 | DOI | MR | Zbl

[2] Cohn P. M., “Centralisateur dans les corps libres”, Ecole de Printemps d'Informatique Théorique, “Séries formelles en variables non commutatives et applications”, ed. J. Berstel, Vieux-Boucau les Bains (Landes), 1978, 45–54 | MR | Zbl

[3] Artamonov V. A., “Telo kvantovykh ratsionalnykh funktsii”, UMN, 54:4 (1999), 151–152 | MR | Zbl

[4] Zelenova S. A., “Kommutativnye podalgebry koltsa kvantovykh mnogochlenov i tela kvantovykh loranovskikh ryadov”, Matem. sb., 192:3 (2001), 55–64 | MR | Zbl

[5] Alev J., Dumas F., “Sur le corps des fractions de certaines algèbres quantiques”, J. of Algebra, 170:1 (1994), 229–265 | DOI | MR | Zbl

[6] Demidov E. E., “O nekotorykh aspektakh teorii kvantovykh grupp”, UMN, 48:6 (1993), 39–74 | MR | Zbl

[7] Brown K. A., Goodearl K. R., Lecture on algebraic quantum groups, Birkhäuser, Basel–Boston, 2002 | MR

[8] Brookes C. J. B., “Crossed products and finitely presented groups”, J. Group Theory, 3 (2000), 433–444 | DOI | MR | Zbl