Commutative Subalgebras of Quantum Algebras
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a general assertion is proved, claiming that, for every associative algebra $\mathscr A$ without zero divisors which admits a valuation and a seminorm concordant with the valuation, the transcendence degree of an arbitrary commutative subalgebra does not exceed the maximal number of independent pairwise pseudocommuting elements of some basis of the algebra $\mathscr A$. The author shows that for such a algebra $\mathscr A$ one can take an arbitrary algebra of quantum Laurent polynomials, quantum analogs of the Weyl algebra, and also some universal coacting algebras. In the case of the algebra $\mathscr L$ of quantum Laurent polynomials, it is proved that the transcendence degree of a maximal commutative subalgebra of $\mathscr L$ coincides with the maximal number of independent pairwise commuting elements of the monomial basis of the algebra $\mathscr L$.
@article{MZM_2004_75_2_a4,
     author = {S. A. Zelenova},
     title = {Commutative {Subalgebras} of {Quantum} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {208--221},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/}
}
TY  - JOUR
AU  - S. A. Zelenova
TI  - Commutative Subalgebras of Quantum Algebras
JO  - Matematičeskie zametki
PY  - 2004
SP  - 208
EP  - 221
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/
LA  - ru
ID  - MZM_2004_75_2_a4
ER  - 
%0 Journal Article
%A S. A. Zelenova
%T Commutative Subalgebras of Quantum Algebras
%J Matematičeskie zametki
%D 2004
%P 208-221
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/
%G ru
%F MZM_2004_75_2_a4
S. A. Zelenova. Commutative Subalgebras of Quantum Algebras. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a4/