A Theorem on the Zeros of Entire Functions and Its Application
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 192-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider entire functions of exponential type $\le \sigma$ that are bounded and real on $\mathbb R$ and satisfy the estimate $(-1)^k f({k\pi}/{\sigma} +\tau)\ge0$, $k\in \mathbb{Z}$. It is proved that the zeros of such functions are real and simple with the possible exception of points of the form ${k\pi}/{\sigma}+\tau$, which can be zeros of multiplicity at most 2. These results are applied to specific classes of functions and to the problem of the stability of entire functions. We also refine and supplement a few results due to Pólya.
@article{MZM_2004_75_2_a3,
     author = {V. P. Zastavnyi},
     title = {A {Theorem} on the {Zeros} of {Entire} {Functions} and {Its} {Application}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a3/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - A Theorem on the Zeros of Entire Functions and Its Application
JO  - Matematičeskie zametki
PY  - 2004
SP  - 192
EP  - 207
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a3/
LA  - ru
ID  - MZM_2004_75_2_a3
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T A Theorem on the Zeros of Entire Functions and Its Application
%J Matematičeskie zametki
%D 2004
%P 192-207
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a3/
%G ru
%F MZM_2004_75_2_a3
V. P. Zastavnyi. A Theorem on the Zeros of Entire Functions and Its Application. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 192-207. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a3/

[1] Polya G., “Über die Nullstellen gewisser ganzer Funktionen”, Math. Z., 2 (1918), 352–383 | DOI | MR | Zbl

[2] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[3] Chebotarëv N. G., Meiman N. N., “Problema Rausa–Gurvitsa dlya polinomov i tselykh funktsii”, Tr. MIAN, 26, 1949 | MR | Zbl

[4] Postnikov M. M., Ustoichivye mnogochleny, Nauka, M., 1981 | MR

[5] Sedletskii A. M., “O tselykh funktsiyakh klassa S. N. Bernshteina, ne yavlyayuschikhsya preobrazovaniyami Fure–Stiltesa”, Matem. zametki, 61:3 (1997), 367–380 | MR