Classification of Harmonic Functions in the Exterior of the Unit Ball
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 182-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the Laplace equation in an exterior infinite spherical domain with nonlinear (quadratic) boundary conditions on the spherical boundary. We linearize the problem and, under the additional assumption that the distinguishing function is spherically symmetric, write the solution by using the formal power series method with recursion of the series coefficients. Applying the Poincarè–Perron theorem, we describe the space of convergent formal power series and calculate its dimension. Estimating the roots of the fourth-degree characteristic polynomial corresponding to the given problem, we also calculate the dimension of the space of functions whose gradient at each point of the sphere is orthogonal to the linear combination of an axially symmetric dipole and a quadrupole. In conclusion, we state several unsolved problems arising in geophysical applications.
@article{MZM_2004_75_2_a2,
     author = {P. M. Akhmet'ev and A. V. Khokhlov},
     title = {Classification of {Harmonic} {Functions} in the {Exterior} of the {Unit} {Ball}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a2/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - A. V. Khokhlov
TI  - Classification of Harmonic Functions in the Exterior of the Unit Ball
JO  - Matematičeskie zametki
PY  - 2004
SP  - 182
EP  - 191
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a2/
LA  - ru
ID  - MZM_2004_75_2_a2
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A A. V. Khokhlov
%T Classification of Harmonic Functions in the Exterior of the Unit Ball
%J Matematičeskie zametki
%D 2004
%P 182-191
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a2/
%G ru
%F MZM_2004_75_2_a2
P. M. Akhmet'ev; A. V. Khokhlov. Classification of Harmonic Functions in the Exterior of the Unit Ball. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 182-191. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a2/

[1] Khokhlov A., Hulot G., Le Mouel J. L., “On the Backus effect – I”, Geophys. J. Int., 130 (1997), 701–703 | DOI

[2] Buslaev V. I., “Sootnosheniya dlya koeffitsientov i osobye tochki funktsii”, Matem. sb., 131:3 (1986), 357–384 | MR | Zbl

[3] Backus G. E., “Non-uniqueness of the external geomagnetic field determined by surface intensity measurements”, J. Geophys. Res., 75 (1970), 6339–6341 | DOI

[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[5] del Carmen Jorge M., Magnanini R., “Explicit calculation of the solution to backus problem with condition for uniqueness”, J. Math. Anal. Appl., 173:2 (1993), 515–522 | DOI | MR | Zbl

[6] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl