@article{MZM_2004_75_2_a11,
author = {I. G. Tsar'kov},
title = {Nonunique {Solvability} of {Certain} {Differential} {Equations} and {Their} {Connection} with {Geometric} {Approximation} {Theory}},
journal = {Matemati\v{c}eskie zametki},
pages = {287--301},
year = {2004},
volume = {75},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a11/}
}
TY - JOUR AU - I. G. Tsar'kov TI - Nonunique Solvability of Certain Differential Equations and Their Connection with Geometric Approximation Theory JO - Matematičeskie zametki PY - 2004 SP - 287 EP - 301 VL - 75 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a11/ LA - ru ID - MZM_2004_75_2_a11 ER -
I. G. Tsar'kov. Nonunique Solvability of Certain Differential Equations and Their Connection with Geometric Approximation Theory. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 287-301. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a11/
[1] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958
[2] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, 1958, M.
[3] Levinson N., “Positive eigenfunctions for $\triangle u+\lambda f(u)=0$”, Arch. Rat. Mech. and Analysis, 11:3 (1962), 258–272 | DOI | MR | Zbl
[4] Krasnoselskii M. A., Stetsenko V. Ya., “O nekotorykh nelineinykh zadachakh, imeyuschikh mnogo reshenii”, Sib. matem. zh., 4:1 (1963), 120–137 | MR
[5] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | Zbl
[6] Pokhozhaev S. I., “O odnom podkhode k nelineinym uravneniyam”, Dokl. AN SSSR, 247:6 (1979), 1327–1331 | MR | Zbl
[7] Begle T. G., “The Vietoris mapping theorem for bicompact spaces”, Ann. of Math., 51:3 (1950), 534–543 | DOI | MR | Zbl
[8] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR
[9] Tsarkov I. G., “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR
[10] Tsarkov I. G., “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR