On the Multiplier Space Generated by the Rademacher System
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 173-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the space of multipliers of symmetric spaces with respect to the Rademacher systems. We obtain sufficient conditions under which the space in question coincides with the space $L_\infty$ (with equivalence of norms). These conditions are stated in terms of operator interpolation theory and are essentially weaker than the conditions for the solution of this problem recently obtained by other authors.
@article{MZM_2004_75_2_a1,
     author = {S. V. Astashkin},
     title = {On the {Multiplier} {Space} {Generated} by the {Rademacher} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--181},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On the Multiplier Space Generated by the Rademacher System
JO  - Matematičeskie zametki
PY  - 2004
SP  - 173
EP  - 181
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a1/
LA  - ru
ID  - MZM_2004_75_2_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On the Multiplier Space Generated by the Rademacher System
%J Matematičeskie zametki
%D 2004
%P 173-181
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a1/
%G ru
%F MZM_2004_75_2_a1
S. V. Astashkin. On the Multiplier Space Generated by the Rademacher System. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 173-181. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a1/

[1] Curbera G. P., “A note on function spaces generated by Rademacher series”, Proc. Edinburgh Math. Soc., 40 (1997), 119–126 | DOI | MR | Zbl

[2] Rodin V. A., Semenov E. M., “Rademacher series in symmetric spaces”, Analysis Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[3] Kurbera G. P., Rodin V. A., “O multiplikatorakh na mnozhestve ryadov Rademakhera”, Tezisy 5-oi Kazanskoi mezhd. shkoly-konferentsii, Kazan, 2001, 148–149

[4] Curbera G. P., Rodin V. A., “Multiplication operators on the space of Rademacher series in rearrangement invariant spaces”, Proc. Edinburgh Math. Soc. (to appear)

[5] Astashkin S. V., Semenov E. M., “Koeffitsienty Fure–Rademakhera”, Dokl. RAN, 375:1 (2000), 7–9 | MR

[6] Astashkin S. V., “O ryadakh po sisteme Rademakhera, “blizkikh” k $L_\infty$”, Funktsion. analiz i ego prilozh., 32:3 (1998), 62–65 | MR | Zbl

[7] Astashkin S. V., “Ob interpolyatsii podprostranstv simmetrichnykh prostranstv, porozhdennykh sistemoi Rademakhera”, Izv. RAEN. Ser. MMMIU, 1:1 (1997), 18–35 | MR | Zbl

[8] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[9] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[10] Lorentz G. G., “Relations between function spaces”, Proc. Amer. Math. Soc., 12 (1961), 127–132 | DOI | MR | Zbl

[11] Holmstedt T., “Interpolation of quasi-normed spaces”, Math. Scand., 26 (1970), 177–199 | MR | Zbl