Projection Method in the Theory of Integral Operators with Homogeneous Kernels
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 163-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the applicability of the projection method to multidimensional integral operators with homogeneous kernels of degree $(- n)$ which are invariant with respect to the rotation group $SO(n)$ in the scalar and matrix cases.
@article{MZM_2004_75_2_a0,
     author = {O. G. Avsyankin and N. K. Karapetyants},
     title = {Projection {Method} in the {Theory} of {Integral} {Operators} with {Homogeneous} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
AU  - N. K. Karapetyants
TI  - Projection Method in the Theory of Integral Operators with Homogeneous Kernels
JO  - Matematičeskie zametki
PY  - 2004
SP  - 163
EP  - 172
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a0/
LA  - ru
ID  - MZM_2004_75_2_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%A N. K. Karapetyants
%T Projection Method in the Theory of Integral Operators with Homogeneous Kernels
%J Matematičeskie zametki
%D 2004
%P 163-172
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a0/
%G ru
%F MZM_2004_75_2_a0
O. G. Avsyankin; N. K. Karapetyants. Projection Method in the Theory of Integral Operators with Homogeneous Kernels. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a0/

[1] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[2] Böttcher A., Silbermann B., Analysis of Toeplitz Operators, Springer-Verlag, Berlin–Heidelberg–New York, 1990 | MR

[3] Prössdorf S., Silbermann B., Numerical Analysis for Integral and Related Operator Equations, Birkhäuser, Basel–Boston–Berlin, 1991 | MR | Zbl

[4] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni ($-n$) yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[5] Karapetiants N., Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[6] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984 | MR | Zbl