Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a version of the Newton–Kantorovich method which, given a nondegenerate square $n\times n$ matrix and a number $m$, allows us to calculate the invariant subspace corresponding to its smallest (in modulus) eigenvalues. We obtain estimates of the rate of convergence via an integral criterion for circular dichotomy.
@article{MZM_2004_75_1_a9,
     author = {Yu. M. Nechepurenko and M. Sadkane},
     title = {Convergence of the {Newton--Kantorovich} {Method} for {Calculating} {Invariant} {Subspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/}
}
TY  - JOUR
AU  - Yu. M. Nechepurenko
AU  - M. Sadkane
TI  - Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces
JO  - Matematičeskie zametki
PY  - 2004
SP  - 109
EP  - 114
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/
LA  - ru
ID  - MZM_2004_75_1_a9
ER  - 
%0 Journal Article
%A Yu. M. Nechepurenko
%A M. Sadkane
%T Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces
%J Matematičeskie zametki
%D 2004
%P 109-114
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/
%G ru
%F MZM_2004_75_1_a9
Yu. M. Nechepurenko; M. Sadkane. Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/

[1] Godunov S. K., Sadkane M., Robbe M., “Smoothing techniques and computation of invariant subspaces of elliptic operators”, Appl. Numerical Math., 33 (2000), 341–347 | DOI | MR | Zbl

[2] Godunov S. K., Nechepurenko Yu. M., “Otsenki skorosti skhodimosti metoda Nyutona dlya vychisleniya invariantnykh podprostranstv”, ZhVM i MF, 42:6 (2002), 771–779 | MR | Zbl

[3] Bulgakov A. Ya., Godunov S. K., “Krugovaya dikhotomiya matrichnogo spektra”, Sib. matem. zh., 29:5 (1988), 59–70 | MR

[4] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya Kniga, Novosibirsk, 1997