Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a version of the Newton–Kantorovich method which, given a nondegenerate square $n\times n$ matrix and a number $m$, allows us to calculate the invariant subspace corresponding to its smallest (in modulus) eigenvalues. We obtain estimates of the rate of convergence via an integral criterion for circular dichotomy.
@article{MZM_2004_75_1_a9,
author = {Yu. M. Nechepurenko and M. Sadkane},
title = {Convergence of the {Newton--Kantorovich} {Method} for {Calculating} {Invariant} {Subspaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {109--114},
publisher = {mathdoc},
volume = {75},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/}
}
TY - JOUR AU - Yu. M. Nechepurenko AU - M. Sadkane TI - Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces JO - Matematičeskie zametki PY - 2004 SP - 109 EP - 114 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/ LA - ru ID - MZM_2004_75_1_a9 ER -
Yu. M. Nechepurenko; M. Sadkane. Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/