Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a version of the Newton–Kantorovich method which, given a nondegenerate square $n\times n$ matrix and a number $m$, allows us to calculate the invariant subspace corresponding to its smallest (in modulus) eigenvalues. We obtain estimates of the rate of convergence via an integral criterion for circular dichotomy.
@article{MZM_2004_75_1_a9,
author = {Yu. M. Nechepurenko and M. Sadkane},
title = {Convergence of the {Newton{\textendash}Kantorovich} {Method} for {Calculating} {Invariant} {Subspaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {109--114},
year = {2004},
volume = {75},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/}
}
Yu. M. Nechepurenko; M. Sadkane. Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 109-114. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a9/
[1] Godunov S. K., Sadkane M., Robbe M., “Smoothing techniques and computation of invariant subspaces of elliptic operators”, Appl. Numerical Math., 33 (2000), 341–347 | DOI | MR | Zbl
[2] Godunov S. K., Nechepurenko Yu. M., “Otsenki skorosti skhodimosti metoda Nyutona dlya vychisleniya invariantnykh podprostranstv”, ZhVM i MF, 42:6 (2002), 771–779 | MR | Zbl
[3] Bulgakov A. Ya., Godunov S. K., “Krugovaya dikhotomiya matrichnogo spektra”, Sib. matem. zh., 29:5 (1988), 59–70 | MR
[4] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya Kniga, Novosibirsk, 1997