When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Injectivity conditions for the homomorfism group $\operatorname{Hom}(A,B)$ regarded as a left module over the endomorfism ring of the group $B$ are found for arbitrary Abelian groups $A$ and $B$, where $B$ is nonreduced.
@article{MZM_2004_75_1_a8,
author = {P. A. Krylov and E. G. Pakhomova},
title = {When {Is} the {Group} $\operatorname{Hom}(A,B)$ an {Injective} $E(B)${-Module?}},
journal = {Matemati\v{c}eskie zametki},
pages = {100--108},
publisher = {mathdoc},
volume = {75},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/}
}
P. A. Krylov; E. G. Pakhomova. When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/