Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_1_a8, author = {P. A. Krylov and E. G. Pakhomova}, title = {When {Is} the {Group} $\operatorname{Hom}(A,B)$ an {Injective} $E(B)${-Module?}}, journal = {Matemati\v{c}eskie zametki}, pages = {100--108}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/} }
P. A. Krylov; E. G. Pakhomova. When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/
[1] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974
[2] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977
[3] Mishina A. P., Mikhalev A. V., “Beskonechnye abelevy gruppy: metody i rezultaty”, Fundament. i prikl. matem., 1:2 (1995), 319–375 | MR | Zbl
[4] Mishina A. P., “Abelian groups”, J. Math. Sci., 76:6 (1995), 2721–2792 | DOI | MR | Zbl
[5] Richman F., Walker E., Ring theory, Academic Press, New York, 1972 | MR
[6] Ivanov A. V., “Abelevy gruppy s samoin'ektivnymi koltsami endomorfizmov i koltsami endomorfizmov s annulyatornym usloviem”, Abelevy gruppy i moduli, Izd-vo TGU, Tomsk, 1982, 93–109 | MR
[7] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1365–1384 | MR | Zbl
[8] Krylov P. A., Pakhomova E. G., Abelevy gruppy i moduli, Izd-vo TGU, Tomsk, 1996
[9] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[10] Puninskii G. E., Tuganbaev A. A., Koltsa i moduli, Soyuz, M., 1998 | MR | Zbl
[11] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977
[12] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR
[13] Arnold D. M., Finite rank torsion-free abelian groups and rings, Lect. Notes in Math., 931, 1982 | MR | Zbl