When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Injectivity conditions for the homomorfism group $\operatorname{Hom}(A,B)$ regarded as a left module over the endomorfism ring of the group $B$ are found for arbitrary Abelian groups $A$ and $B$, where $B$ is nonreduced.
@article{MZM_2004_75_1_a8,
     author = {P. A. Krylov and E. G. Pakhomova},
     title = {When {Is} the {Group} $\operatorname{Hom}(A,B)$ an {Injective} $E(B)${-Module?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - E. G. Pakhomova
TI  - When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
JO  - Matematičeskie zametki
PY  - 2004
SP  - 100
EP  - 108
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/
LA  - ru
ID  - MZM_2004_75_1_a8
ER  - 
%0 Journal Article
%A P. A. Krylov
%A E. G. Pakhomova
%T When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
%J Matematičeskie zametki
%D 2004
%P 100-108
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/
%G ru
%F MZM_2004_75_1_a8
P. A. Krylov; E. G. Pakhomova. When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/