When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Injectivity conditions for the homomorfism group $\operatorname{Hom}(A,B)$ regarded as a left module over the endomorfism ring of the group $B$ are found for arbitrary Abelian groups $A$ and $B$, where $B$ is nonreduced.
@article{MZM_2004_75_1_a8,
     author = {P. A. Krylov and E. G. Pakhomova},
     title = {When {Is} the {Group} $\operatorname{Hom}(A,B)$ an {Injective} $E(B)${-Module?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - E. G. Pakhomova
TI  - When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
JO  - Matematičeskie zametki
PY  - 2004
SP  - 100
EP  - 108
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/
LA  - ru
ID  - MZM_2004_75_1_a8
ER  - 
%0 Journal Article
%A P. A. Krylov
%A E. G. Pakhomova
%T When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?
%J Matematičeskie zametki
%D 2004
%P 100-108
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/
%G ru
%F MZM_2004_75_1_a8
P. A. Krylov; E. G. Pakhomova. When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a8/

[1] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[2] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[3] Mishina A. P., Mikhalev A. V., “Beskonechnye abelevy gruppy: metody i rezultaty”, Fundament. i prikl. matem., 1:2 (1995), 319–375 | MR | Zbl

[4] Mishina A. P., “Abelian groups”, J. Math. Sci., 76:6 (1995), 2721–2792 | DOI | MR | Zbl

[5] Richman F., Walker E., Ring theory, Academic Press, New York, 1972 | MR

[6] Ivanov A. V., “Abelevy gruppy s samoin'ektivnymi koltsami endomorfizmov i koltsami endomorfizmov s annulyatornym usloviem”, Abelevy gruppy i moduli, Izd-vo TGU, Tomsk, 1982, 93–109 | MR

[7] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1365–1384 | MR | Zbl

[8] Krylov P. A., Pakhomova E. G., Abelevy gruppy i moduli, Izd-vo TGU, Tomsk, 1996

[9] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[10] Puninskii G. E., Tuganbaev A. A., Koltsa i moduli, Soyuz, M., 1998 | MR | Zbl

[11] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[12] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[13] Arnold D. M., Finite rank torsion-free abelian groups and rings, Lect. Notes in Math., 931, 1982 | MR | Zbl