A New Martingale Representation Theorem (Discrete Time)
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 40-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a new theorem concerning representation of discrete time martingales, which is based on solving a specially chosen problem of optimal control with random sequences. We establish a relationship between the solution of the Bellman equation and the martingale representation. We illustrate the results with an example of calculating a European type option.
@article{MZM_2004_75_1_a4,
     author = {N. S. Boyarintseva and V. M. Khametov},
     title = {A {New} {Martingale} {Representation} {Theorem} {(Discrete} {Time)}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {40--54},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a4/}
}
TY  - JOUR
AU  - N. S. Boyarintseva
AU  - V. M. Khametov
TI  - A New Martingale Representation Theorem (Discrete Time)
JO  - Matematičeskie zametki
PY  - 2004
SP  - 40
EP  - 54
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a4/
LA  - ru
ID  - MZM_2004_75_1_a4
ER  - 
%0 Journal Article
%A N. S. Boyarintseva
%A V. M. Khametov
%T A New Martingale Representation Theorem (Discrete Time)
%J Matematičeskie zametki
%D 2004
%P 40-54
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a4/
%G ru
%F MZM_2004_75_1_a4
N. S. Boyarintseva; V. M. Khametov. A New Martingale Representation Theorem (Discrete Time). Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 40-54. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a4/

[1] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, T. 1, M., 1994

[2] Elliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986 | MR | Zbl

[3] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998

[4] El Karoui N., Quenez M. C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control Optim., 53:1 (1995), 29–66 | DOI | MR

[5] Melnikov A. V., Finansovye rynki: stokhasticheskii analiz i raschet proizvodnykh tsennykh bumag, TVP, M., 1997

[6] Melnikov A. V., Volkov S. N., Nechaev M. M., Matematika finansovykh obyazatelstv, GUVShE, M., 2001

[7] Mania M., “A general problem of an optimal equivalent change of measure and contingent claim pricing in an incomplete market”, Stochastic Process and their Appl., 90 (2000), 19–42 | DOI | MR | Zbl

[8] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[9] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl

[10] Khametov V. M., Piunovskii A. B., Optimalnoe upravlenie skachkoobraznymi sluchainymi protsessami, MIEM, M., 1987

[11] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie, Nauka, M., 1985 | MR | Zbl

[12] Piunovskii A. B., Khametov V. M., “Novye tochno reshaemye primery dlya upravlyaemykh tsepei Markova s diskretnym vremenem”, Kibernetika, 1991, no. 3, 82–90 | MR | Zbl

[13] Volkov S. N., Kramkov D. O., “O metodologii khedzhirovaniya optsionov.”, Obozrenie prikl. promyshl. matem. Ser. fin. i strakh. mat., 4:1 (1997), 18–65 | MR

[14] Dynkin E. B., Yushkevich A. A., Upravlyaemye markovskie protsessy i ikh prilozheniya, Nauka, M., 1975 | MR

[15] Sainte-Beuve M. F., “One the extension of von Neumann–Aumann's theorem”, J. Funct. Anal., 17 (1974), 112–129 | DOI | MR | Zbl