On the Asymptotic Behavior of the Distributions of First-Passage Times, I
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 24-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the asymptotic behavior of and estimates for the distribution of first-passage times for a random walk are obtained in the cases of fixed and increasing levels. In the first part of the paper, the case of zero level is studied.
@article{MZM_2004_75_1_a3,
     author = {A. A. Borovkov},
     title = {On the {Asymptotic} {Behavior} of the {Distributions} of {First-Passage} {Times,} {I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {24--39},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - On the Asymptotic Behavior of the Distributions of First-Passage Times, I
JO  - Matematičeskie zametki
PY  - 2004
SP  - 24
EP  - 39
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/
LA  - ru
ID  - MZM_2004_75_1_a3
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T On the Asymptotic Behavior of the Distributions of First-Passage Times, I
%J Matematičeskie zametki
%D 2004
%P 24-39
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/
%G ru
%F MZM_2004_75_1_a3
A. A. Borovkov. On the Asymptotic Behavior of the Distributions of First-Passage Times, I. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 24-39. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/

[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl

[2] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[3] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR

[4] Borovkov A. A., “Predelnye teoremy o raspredelenii maksimuma summ ogranichennykh reshetchatykh sluchainykh velichin. I; II”, Teoriya veroyatn. i ee prim., 5:2 (1960), 137–171 | MR | Zbl

[5] Emery D. J., “Limiting behaviour of the distribution of the maxima of partial sums of certain random walks”, J. Appl. Probab., 9 (1972), 572–579 | DOI | MR | Zbl

[6] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[7] Doney R. A., “On the asymptotic behaviour of first passage times for transient random walk”, Probability Theory and Related Fields, 18 (1989), 239–246 | DOI | MR

[8] Bertoin J., Doney R. A., “Some asymptotic results for transient random walks”, Adv. Appl. Probab., 28 (1996), 207–227 | DOI | MR

[9] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. I; II; III”, Matem. trudy, 2:2 (1999), 57–97 ; 3:1 (2000), 48–118 ; 4:1 (2001), 68–93 | MR | Zbl | MR | Zbl | MR | Zbl

[10] Heyde C. C., “Asymptotic renewal results for a natural generalization of classical renewal theory”, J. Roy. Statist. Soc. Ser. B, 29 (1967), 141–150 | MR | Zbl

[11] Janson S., “Moments for first-passage and last-exit times. The minimum, and related quantaties for random walks with positive drift”, Adv. Appl. Probab., 18 (1986), 865–879 | DOI | MR | Zbl

[12] Gut A., “Stopped random walks”, Limit Theorems and Applications, Springer-Verlag, 1988 | MR

[13] Kesten H., Maller R. A., “Two renewal theorems for general random walks tending to infinity”, Probability Theory and Related Fields, 106:1 (1996), 1–38 | DOI | MR | Zbl

[14] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M. ; Изд-во ИМ СО РАН, Новосибирск, 1999 | MR | Zbl

[15] Chover J., Ney P., Wainger S., “Function of probability measures”, J. Analyse Math., 26 (1973), 255–302 | DOI | MR | Zbl

[16] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behaviour, stationary distributions and first passage probabilities”, The Annals of Appl. Probability, 8:2 (1998), 354–374 | DOI | MR | Zbl

[17] Nagaev S. V., “Ob asimptoticheskom povedenii veroyatnostei odnostoronnikh bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 26:2 (1981), 369–372 | MR | Zbl

[18] Borovkov A. A., “Otsenki dlya raspredeleniya summ i maksimumov summ sluchainykh velichin pri nevypolnenii usloviya Kramera”, Sib. matem. zh., 41:5 (2000), 997–1038 | MR | Zbl

[19] Borovkov A. A., “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii s semieksponentsialnymi raspredeleniyami”, Sib. matem. zh., 41:6 (2000), 1290–1324 | MR | Zbl

[20] Stone C., “On local and ratio limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob., 2, no. 2, ed. J. Neyman, 1967, 217–224 | MR | Zbl

[21] Feller W., “On regular variation and local limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob., 2, no. 1, ed. J. Neyman, 1967, 373–388 | MR | Zbl

[22] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[23] Borovkov A. A., “Integro-lokalnye teoremy o bolshikh ukloneniyakh summ sluchainykh vektorov. Regulyarnye raspredeleniya”, Sib. matem. zh., 43:3 (2002), 508–525 | MR | Zbl

[24] Doney R. A., “A large deviation local limit theorem”, Math. Proc. Cambridge Phil. Soc., 105 (1989), 575–577 | MR | Zbl