Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_1_a3, author = {A. A. Borovkov}, title = {On the {Asymptotic} {Behavior} of the {Distributions} of {First-Passage} {Times,} {I}}, journal = {Matemati\v{c}eskie zametki}, pages = {24--39}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/} }
A. A. Borovkov. On the Asymptotic Behavior of the Distributions of First-Passage Times, I. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 24-39. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a3/
[1] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl
[2] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl
[3] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR
[4] Borovkov A. A., “Predelnye teoremy o raspredelenii maksimuma summ ogranichennykh reshetchatykh sluchainykh velichin. I; II”, Teoriya veroyatn. i ee prim., 5:2 (1960), 137–171 | MR | Zbl
[5] Emery D. J., “Limiting behaviour of the distribution of the maxima of partial sums of certain random walks”, J. Appl. Probab., 9 (1972), 572–579 | DOI | MR | Zbl
[6] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[7] Doney R. A., “On the asymptotic behaviour of first passage times for transient random walk”, Probability Theory and Related Fields, 18 (1989), 239–246 | DOI | MR
[8] Bertoin J., Doney R. A., “Some asymptotic results for transient random walks”, Adv. Appl. Probab., 28 (1996), 207–227 | DOI | MR
[9] Mogulskii A. A., Rogozin B. A., “Sluchainye bluzhdaniya v polozhitelnom kvadrante. I; II; III”, Matem. trudy, 2:2 (1999), 57–97 ; 3:1 (2000), 48–118 ; 4:1 (2001), 68–93 | MR | Zbl | MR | Zbl | MR | Zbl
[10] Heyde C. C., “Asymptotic renewal results for a natural generalization of classical renewal theory”, J. Roy. Statist. Soc. Ser. B, 29 (1967), 141–150 | MR | Zbl
[11] Janson S., “Moments for first-passage and last-exit times. The minimum, and related quantaties for random walks with positive drift”, Adv. Appl. Probab., 18 (1986), 865–879 | DOI | MR | Zbl
[12] Gut A., “Stopped random walks”, Limit Theorems and Applications, Springer-Verlag, 1988 | MR
[13] Kesten H., Maller R. A., “Two renewal theorems for general random walks tending to infinity”, Probability Theory and Related Fields, 106:1 (1996), 1–38 | DOI | MR | Zbl
[14] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M. ; Изд-во ИМ СО РАН, Новосибирск, 1999 | MR | Zbl
[15] Chover J., Ney P., Wainger S., “Function of probability measures”, J. Analyse Math., 26 (1973), 255–302 | DOI | MR | Zbl
[16] Asmussen S., “Subexponential asymptotics for stochastic processes: extremal behaviour, stationary distributions and first passage probabilities”, The Annals of Appl. Probability, 8:2 (1998), 354–374 | DOI | MR | Zbl
[17] Nagaev S. V., “Ob asimptoticheskom povedenii veroyatnostei odnostoronnikh bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 26:2 (1981), 369–372 | MR | Zbl
[18] Borovkov A. A., “Otsenki dlya raspredeleniya summ i maksimumov summ sluchainykh velichin pri nevypolnenii usloviya Kramera”, Sib. matem. zh., 41:5 (2000), 997–1038 | MR | Zbl
[19] Borovkov A. A., “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii s semieksponentsialnymi raspredeleniyami”, Sib. matem. zh., 41:6 (2000), 1290–1324 | MR | Zbl
[20] Stone C., “On local and ratio limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob., 2, no. 2, ed. J. Neyman, 1967, 217–224 | MR | Zbl
[21] Feller W., “On regular variation and local limit theorems”, Proc. Fifth Berkeley Symp. Math. Stat. Prob., 2, no. 1, ed. J. Neyman, 1967, 373–388 | MR | Zbl
[22] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[23] Borovkov A. A., “Integro-lokalnye teoremy o bolshikh ukloneniyakh summ sluchainykh vektorov. Regulyarnye raspredeleniya”, Sib. matem. zh., 43:3 (2002), 508–525 | MR | Zbl
[24] Doney R. A., “A large deviation local limit theorem”, Math. Proc. Cambridge Phil. Soc., 105 (1989), 575–577 | MR | Zbl