Integrability of the Problem of the Motion of a Cylinder and a Vortex in an Ideal Fluid
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a nonlinear Poisson structure and two first integrals in the problem of the plane motion of a circular cylinder and $N$ point vortices in an ideal fluid. This problem is a priori not Hamiltonian; specifically, in the case $N= 1$ (i.e., in the problem of the interaction of a cylinder with a vortex) it is integrable.
@article{MZM_2004_75_1_a2,
     author = {A. V. Borisov and I. S. Mamaev},
     title = {Integrability of the {Problem} of the {Motion} of a {Cylinder} and a {Vortex} in an {Ideal} {Fluid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {20--23},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a2/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Integrability of the Problem of the Motion of a Cylinder and a Vortex in an Ideal Fluid
JO  - Matematičeskie zametki
PY  - 2004
SP  - 20
EP  - 23
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a2/
LA  - ru
ID  - MZM_2004_75_1_a2
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%T Integrability of the Problem of the Motion of a Cylinder and a Vortex in an Ideal Fluid
%J Matematičeskie zametki
%D 2004
%P 20-23
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a2/
%G ru
%F MZM_2004_75_1_a2
A. V. Borisov; I. S. Mamaev. Integrability of the Problem of the Motion of a Cylinder and a Vortex in an Ideal Fluid. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 20-23. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a2/

[1] Ramodanov S. M., “Motion of a Circular Cylinder and a Vortex in an Ideal Fluid”, Reg. Chaot. Dyn., 6:1 (2001), 33–38 | DOI | MR | Zbl

[2] Shashikanth B. N., Marsden J. E., Burdick J. W., Kelly S. D., “The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with $N$ point vortices”, Phys. of Fluids, 14 (2002), 1214–1227 | DOI | MR | Zbl

[3] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, RKhD, Izhevsk, 1999 | MR