Volterra-Type Equations in $\mathscr S'_+$
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 135-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient condition for the unique solvability of Volterra integro-differential equation in $\mathscr S'_+$ is given.
@article{MZM_2004_75_1_a11,
     author = {S. Pilipovi\'c and M. Stojanovic},
     title = {Volterra-Type {Equations} in $\mathscr S'_+$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {135--141},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a11/}
}
TY  - JOUR
AU  - S. Pilipović
AU  - M. Stojanovic
TI  - Volterra-Type Equations in $\mathscr S'_+$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 135
EP  - 141
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a11/
LA  - ru
ID  - MZM_2004_75_1_a11
ER  - 
%0 Journal Article
%A S. Pilipović
%A M. Stojanovic
%T Volterra-Type Equations in $\mathscr S'_+$
%J Matematičeskie zametki
%D 2004
%P 135-141
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a11/
%G ru
%F MZM_2004_75_1_a11
S. Pilipović; M. Stojanovic. Volterra-Type Equations in $\mathscr S'_+$. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 135-141. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a11/

[1] Hörmander L., The Analysis of Linear Partial Differential Operators, V. II, Springer-Verlag, Berlin–Götingen–Heidelberg, 1985

[2] Corduneanu C., Integral Equations and Applications, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[3] Guo D., Lakshmikantham V., Liu X., Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, 1996 | MR

[4] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1987

[5] Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin–Götingen–Heidelberg, 1985 | MR