On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study equations of the form $\partial f+Af+B\bar f=G$, on an arbitrary noncompact Riemann surface $R$, where $A$, $B$, and $G$ are given square-integrable linear differentials of genus $(0,1)$ satisfying certain additional conditions. Necessary and sufficient conditions for the solvability of the above equation are proved for the class of functions with $\Lambda_0$-behavior in the neighborhood of the ideal boundary of the surface $R$; the index of the equation is also calculated.
@article{MZM_2004_75_1_a0,
     author = {I. A. Bikchantaev},
     title = {On {Carleman--Vekua} {Equations} with {Nonfinitely} {Supported} {Coefficients} on a {Noncompact} {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
JO  - Matematičeskie zametki
PY  - 2004
SP  - 3
EP  - 12
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/
LA  - ru
ID  - MZM_2004_75_1_a0
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
%J Matematičeskie zametki
%D 2004
%P 3-12
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/
%G ru
%F MZM_2004_75_1_a0
I. A. Bikchantaev. On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/

[1] Bers L., “Partial differential equations and pseudo-analytic functions on Rieman surfases”, Ann. of Math. Stud., 30 (1953), 157–165 | MR | Zbl

[2] Volkovyskii K. L., “Obobschennye analiticheskie funktsii na rimanovykh poverkhnostyakh”, Dokl. AN SSSR, 225:1 (1975), 37–40 | MR | Zbl

[3] Volkovyskii K. L., “Teorema Liuvillya dlya obobschennykh analiticheskikh funktsii na otkrytykh rimanovykh poverkhnostyakh”, Dokl. AN UzSSR, 3 (1976), 11–13 | MR | Zbl

[4] Bikchantaev I. A., “O resheniyakh ellipticheskoi sistemy differentsialnykh uravnenii pervogo poryadka na rimanovoi poverkhnosti”, Matem. zametki, 33:1 (1983), 97–110 | MR | Zbl

[5] Bikchantaev I. A., “Teorema Liuvillya dlya obobschennykh analiticheskikh funktsii na otkrytoi rimanovoi poverkhnosti”, Izv. vuzov. Matem., 1983, no. 3, 12–16 | MR

[6] Bikchantaev I. A., “Integralnye predstavleniya reshenii ellipticheskikh sistem pervogo poryadka na rimanovykh poverkhnostyakh”, Differents. uravneniya, 22:9 (1986), 1557–1565 | MR | Zbl

[7] Shiba M., “Some general properties of behavior spaces of harmonic semiexact differentials on an open Riemann surface”, Hiroshima Math. J., 8:1 (1978), 151–164 | MR | Zbl

[8] Bikchantaev I. A., “Integralnye operatory I. N. Vekua na rimanovoi poverkhnosti”, Matem. zametki, 69:1 (2001), 18–30 | MR | Zbl

[9] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[10] Shiba M., “On the Riemann–Roch theorem on open Riemann surfases”, J. Math. Kyoto Univ., 11:3 (1971), 495–525 | MR | Zbl

[11] Bikchantaev I. A., “Analogi yadra Koshi na rimanovoi poverkhnosti i nekotorye ikh prilozheniya”, Matem. sb., 112:2 (1980), 256–282 | MR | Zbl

[12] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl