On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study equations of the form $\partial f+Af+B\bar f=G$, on an arbitrary noncompact Riemann surface $R$, where $A$, $B$, and $G$ are given square-integrable linear differentials of genus $(0,1)$ satisfying certain additional conditions. Necessary and sufficient conditions for the solvability of the above equation are proved for the class of functions with $\Lambda_0$-behavior in the neighborhood of the ideal boundary of the surface $R$; the index of the equation is also calculated.
@article{MZM_2004_75_1_a0,
     author = {I. A. Bikchantaev},
     title = {On {Carleman--Vekua} {Equations} with {Nonfinitely} {Supported} {Coefficients} on a {Noncompact} {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
JO  - Matematičeskie zametki
PY  - 2004
SP  - 3
EP  - 12
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/
LA  - ru
ID  - MZM_2004_75_1_a0
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface
%J Matematičeskie zametki
%D 2004
%P 3-12
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/
%G ru
%F MZM_2004_75_1_a0
I. A. Bikchantaev. On Carleman--Vekua Equations with Nonfinitely Supported Coefficients on a Noncompact Riemann Surface. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a0/