Algorithmic Complexity of a Problem of Idempotent Convex Geometry
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 896-901

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the idempotently convex hull of a two-point set in a free semimodule over the idempotent semiring $R_{\max\min}$ and in a free semimodule over a linearly ordered idempotent semifield are studied. Construction algorithms for this hull are proposed.
@article{MZM_2003_74_6_a9,
     author = {S. N. Sergeev},
     title = {Algorithmic {Complexity} of a {Problem} of {Idempotent} {Convex} {Geometry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {896--901},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a9/}
}
TY  - JOUR
AU  - S. N. Sergeev
TI  - Algorithmic Complexity of a Problem of Idempotent Convex Geometry
JO  - Matematičeskie zametki
PY  - 2003
SP  - 896
EP  - 901
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a9/
LA  - ru
ID  - MZM_2003_74_6_a9
ER  - 
%0 Journal Article
%A S. N. Sergeev
%T Algorithmic Complexity of a Problem of Idempotent Convex Geometry
%J Matematičeskie zametki
%D 2003
%P 896-901
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a9/
%G ru
%F MZM_2003_74_6_a9
S. N. Sergeev. Algorithmic Complexity of a Problem of Idempotent Convex Geometry. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 896-901. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a9/