Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 848-857.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the notions of Laplace transformations and Laplace invariants for systems of hyperbolic equations and study conditions for their existence. We prove that a hyperbolic system admits the Laplace transformation if and only if there exists a matrix of rank $k$ mapping any vector whose components are functions of one of the independent variables into a solution of this system, where $k$ is the defect of the corresponding Laplace invariant. We show that a chain of Laplace invariants exists only if the hyperbolic system has a entire collection of integrals and the dual system has a entire collection of solutions depending on arbitrary functions. An example is given showing that these conditions are not sufficient for the existence of a Laplace transformation.
@article{MZM_2003_74_6_a4,
     author = {A. V. Zhiber and S. Ya. Startsev},
     title = {Integrals, {Solutions,} and {Existence} {Problems} for {Laplace} {Transformations} of {Linear} {Hyperbolic} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--857},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a4/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - S. Ya. Startsev
TI  - Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems
JO  - Matematičeskie zametki
PY  - 2003
SP  - 848
EP  - 857
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a4/
LA  - ru
ID  - MZM_2003_74_6_a4
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A S. Ya. Startsev
%T Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems
%J Matematičeskie zametki
%D 2003
%P 848-857
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a4/
%G ru
%F MZM_2003_74_6_a4
A. V. Zhiber; S. Ya. Startsev. Integrals, Solutions, and Existence Problems for Laplace Transformations of Linear Hyperbolic Systems. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 848-857. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a4/

[1] Darboux G., Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, V. 1–4, Gauthier-Villars, Paris, 1896

[2] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957

[3] Zhiber A. V., Sokolov V. V., Startsev S. Ya., “O nelineinykh giperbolicheskikh uravneniyakh, integriruemykh po Darbu”, Dokl. RAN, 343:6 (1995), 746–748 | MR | Zbl

[4] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl

[5] Anderson I. M., Kamran N., “The variational bicomplex for second order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[6] Anderson I. M., Juras M., “Generalized Laplace invariant and the method of Darboux”, Duke Math. J., 89:2 (1997), 351–375 | DOI | MR | Zbl

[7] Tsarev S. P., “Faktorizatsiya lineinykh differentsialnykh operatorov s chastnymi proizvodnymi i metod Darbu integrirovaniya nelineinykh uravnenii s chastnymi proizvodnymi”, TMF, 122:1 (2000), 144–160 | MR | Zbl

[8] Startsev S. Ya., “O differentsialnykh podstanovkakh tipa preobrazovaniya Miury”, TMF, 116:3 (1998), 336–348 | MR | Zbl

[9] Startsev S. Ya., “O giperbolicheskikh uravneniyakh, dopuskayuschikh differentsialnye podstanovki”, TMF, 127:1 (2001), 63–74 | MR | Zbl

[10] Zhiber A. V., Sokolov V. V., “Tochno integriruemye uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | MR | Zbl

[11] Ferapontov E. V., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, TMF, 110:1 (1997), 86–98 | MR

[12] Adler V. E., Startsev S. Ya., “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | MR | Zbl

[13] Startsev S. Ya., “Ob invariantakh Laplasa sistem giperbolicheskikh uravnenii”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya, no. 3, Institut matematiki s VTs RAN, Ufa, 1996, 144–154