Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 803-814
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain sufficient conditions for the existence of a unique regular solution of the boundary-value problems for operator differential equations of order $2k$ with variable coefficients. These conditions are expressed solely in terms of operator coefficients of the equations under study.
@article{MZM_2003_74_6_a0,
author = {A. R. Aliev},
title = {Boundary-Value {Problems} for a {Class} of {Operator} {Differential} {Equations} of {High} {Order} with {Variable} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--814},
publisher = {mathdoc},
volume = {74},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/}
}
TY - JOUR AU - A. R. Aliev TI - Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients JO - Matematičeskie zametki PY - 2003 SP - 803 EP - 814 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/ LA - ru ID - MZM_2003_74_6_a0 ER -
A. R. Aliev. Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/