Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 803-814.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain sufficient conditions for the existence of a unique regular solution of the boundary-value problems for operator differential equations of order $2k$ with variable coefficients. These conditions are expressed solely in terms of operator coefficients of the equations under study.
@article{MZM_2003_74_6_a0,
     author = {A. R. Aliev},
     title = {Boundary-Value {Problems} for a {Class} of {Operator} {Differential} {Equations} of {High} {Order} with {Variable} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--814},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/}
}
TY  - JOUR
AU  - A. R. Aliev
TI  - Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients
JO  - Matematičeskie zametki
PY  - 2003
SP  - 803
EP  - 814
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/
LA  - ru
ID  - MZM_2003_74_6_a0
ER  - 
%0 Journal Article
%A A. R. Aliev
%T Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients
%J Matematičeskie zametki
%D 2003
%P 803-814
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/
%G ru
%F MZM_2003_74_6_a0
A. R. Aliev. Boundary-Value Problems for a Class of Operator Differential Equations of High Order with Variable Coefficients. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a0/

[1] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[2] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl

[3] Gasymov M. G., “K teorii polinomialnykh operatornykh puchkov”, Dokl. AN SSSR, 199:4 (1971), 747–750 | Zbl

[4] Gasymov M. G., “O kratnoi polnote chasti sobstvennykh i prisoedinennykh vektorov polinomialnykh operatornykh puchkov”, Izv. AN ArmSSR. Ser. matem., 6:2–3 (1971), 131–147 | MR | Zbl

[5] Mirzoev S. S., “O kratnoi polnote kornevykh vektorov polinomialnykh operatornykh puchkov, otvechayuschikh kraevym zadacham na poluosi”, Funktsion. analiz i ego prilozh., 17:2 (1983), 84–85 | MR | Zbl

[6] Mirzoev S. S., “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, Dokl. AN SSSR, 273:2 (1983), 292–295 | MR | Zbl

[7] Dubinskii Yu. A., “O nekotorykh differentsialno-operatornykh uravneniyakh proizvolnogo poryadka”, Matem. sb., 90(132):1, 3–22 | Zbl

[8] Shkalikov A. A., “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, no. 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | Zbl

[9] Mirzoev S. S., Voprosy teorii razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi, Diss. ... d.f.-m. n., BGU, Baku, 1994

[10] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, ELM, Baku, 1985

[11] Oleinik O. A., “Kraevye zadachi dlya lineinykh uravnenii ellipticheskogo i parabolicheskogo tipa s razryvnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 3–20 | MR | Zbl

[12] Girsanov I. V., “O reshenii nekotorykh kraevykh zadach dlya parabolicheskikh i ellipticheskikh uravnenii s razryvnymi koeffitsientami”, Dokl. AN SSSR, 135:6 (1960), 1311–1313 | MR

[13] Mirzoev S. S., Aliev A. R., “Ob odnoi kraevoi zadache dlya operatorno-differentsialnykh uravnenii vtorogo poryadka s razryvnym koeffitsientom”, Tr. instituta matem. i mekh. AN Azerb., 7(15) (1997), 18–25 | MR

[14] Aliev A. R., O korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii s razryvnym koeffitsientom, Diss. ... k.f.-m.n., BGU, Baku, 1998