Approximate Solution of Singular Optimization Problems
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 728-738.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the optimal control problem for systems described by nonlinear elliptic equations. We have no information about the existence and uniqueness of the solution for some particular control. The extremum problem may be unsolvable. We regularize the problem by using a combination of the penalty method and the Tikhonov method. For the regularized problem, we prove the existence of the solution and find necessary conditions for optimality in the form of variational inequalities. We show that the regularization method used in this paper allows one to find an approximate (in some sense) solution of the original problem.
@article{MZM_2003_74_5_a8,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Approximate {Solution} of {Singular} {Optimization} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {728--738},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a8/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Approximate Solution of Singular Optimization Problems
JO  - Matematičeskie zametki
PY  - 2003
SP  - 728
EP  - 738
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a8/
LA  - ru
ID  - MZM_2003_74_5_a8
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Approximate Solution of Singular Optimization Problems
%J Matematičeskie zametki
%D 2003
%P 728-738
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a8/
%G ru
%F MZM_2003_74_5_a8
S. Ya. Serovaǐskiǐ. Approximate Solution of Singular Optimization Problems. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 728-738. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a8/

[1] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[2] Fursikov A. V., “Svoistva reshenii nekotorykh ekstremalnykh zadach, svyazannykh s uravneniyami Nave–Stoksa”, Matem. sb., 118:3 (1982), 323–349 | Zbl

[3] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[4] Tiba J., “Optimal control for second order semilinear hyperbolic equations”, Control Theory and Advanced Technologies, 3:1 (1987), 33–43 | MR

[5] Sumin V. I., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemykh kraevykh zadach”, Differents. uravneniya, 26:12 (1990), 2097–2109 | MR | Zbl

[6] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974 | MR

[7] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989 | MR | Zbl

[8] Sumin V. I., “O rasshirenii optimizatsionnykh zadach, svyazannykh s funktsionalnymi uravneniyami v prostranstvakh suschestvenno ogranichennykh funktsii”, Matem. model. i optim. upravl., 1998, no. 1, 126–133 | Zbl

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1978 | MR

[10] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[11] Zolezzi T., “A characterizations of well-posed optimal control systems”, SIAM J. Control and Optim., 19:5 (1981), 604–616 | DOI | MR | Zbl

[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[13] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973 | MR

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[15] Serovaiskii S. Ya., “Optimalnoe upravlenie dlya uravnenii parabolicheskogo tipa s negladkoi nelineinostyu”, Matem. zh., 2:1 (2002), 76–83; 2, 87–94

[16] Serovaiskii S. Ya., Kontrprimery v teorii optimalnogo upravleniya, Kazak universiteti, Almaty, 2001

[17] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[18] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[19] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[20] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[21] Ekeland I., “The $\varepsilon$-variational principle revisited”, Lecture Notes in Math., 1446, 1990, 1–15 | MR | Zbl

[22] Averbukh V. I., Smolyanov O. G., “Teoriya differentsirovaniya v lineinykh topologicheskikh prostranstvakh”, UMN, 22:6 (1967), 201–260 | Zbl