Finite Groups with Nonmonomial Characters of Prime Degree
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 713-718.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every finite group for which the degrees of its nonmonomial characters are primes is solvable. The proof uses the classification of the finite simple groups.
@article{MZM_2003_74_5_a6,
     author = {I. A. Sagirov},
     title = {Finite {Groups} with {Nonmonomial} {Characters} of {Prime} {Degree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--718},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a6/}
}
TY  - JOUR
AU  - I. A. Sagirov
TI  - Finite Groups with Nonmonomial Characters of Prime Degree
JO  - Matematičeskie zametki
PY  - 2003
SP  - 713
EP  - 718
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a6/
LA  - ru
ID  - MZM_2003_74_5_a6
ER  - 
%0 Journal Article
%A I. A. Sagirov
%T Finite Groups with Nonmonomial Characters of Prime Degree
%J Matematičeskie zametki
%D 2003
%P 713-718
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a6/
%G ru
%F MZM_2003_74_5_a6
I. A. Sagirov. Finite Groups with Nonmonomial Characters of Prime Degree. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 713-718. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a6/

[1] Feit W., Characters of Finite Groups, W. A. Benjamin, inc., New York–Amsterdam, 1967 | MR | Zbl

[2] Huppert B., Endliche Gruppen, V. I, Springer, Berlin, 1967 | MR | Zbl

[3] Chubarov I. A., Svyaz svoistv grupp s monomialnostyu ikh kharakterov, Dep v VINITI. 13 iyunya 1980, No. 2365-80, Mosk. fiz.-tekh. in-t, M.

[4] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, Sverdlovsk, 1990

[5] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[6] Kazarin L. S., “O proizvedenii konechnykh grupp”, Dokl. AN, 269:3 (1983), 528–531 | MR | Zbl

[7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of Finite Groups, Clarendon Press, London, 1985 | MR | Zbl