Reducibility of a Class of Operator Functions to Block-Diagonal Form
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 789-792
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_2003_74_5_a15,
author = {G. A. Kurina and G. V. Martynenko},
title = {Reducibility of a {Class} of {Operator} {Functions} to {Block-Diagonal} {Form}},
journal = {Matemati\v{c}eskie zametki},
pages = {789--792},
year = {2003},
volume = {74},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a15/}
}
G. A. Kurina; G. V. Martynenko. Reducibility of a Class of Operator Functions to Block-Diagonal Form. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 789-792. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a15/
[1] Kurina G. A., Martynenko G. V., Differents. uravneniya, 37:2 (2001), 212–217 | MR | Zbl
[2] Anosov D. V., Matem. sb., 50 (92):3 (1960), 299–334 | MR
[3] Sibuya Y., Math. Ann., 161 (1965), 67–77 | DOI | MR | Zbl
[4] Kurina G. A., Martynenko G. V., Matem. zametki, 66:5 (1999), 688–695 | MR | Zbl
[5] Azizov T. Ya., Kiriakidi V. K., Kurina G. A., Funktsion. analiz i ego prilozh., 35:3 (2001), 73–75 | MR | Zbl
[6] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR
[7] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970