On the Strong Resolvent Convergence of the Schr\"odinger Evolution to Quantum Stochastics
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 762-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of Hamiltonians including a model of the quantum detector of gravitational waves, we prove the strong convergence of the Schrödinger evolution to quantum stochastics. We show that the strong resolvent limit of a sequence of self-adjoint Hamiltonians is a symmetric boundary-value problem in Fock space, and the limit evolution of the partial trace with respect to the mixed state cannot be described by a unique equation of Lindblad type. On the contrary, each component of the mixed state generates a proper evolution law.
@article{MZM_2003_74_5_a12,
     author = {A. M. Chebotarev and G. V. Ryzhakov},
     title = {On the {Strong} {Resolvent} {Convergence} of the {Schr\"odinger} {Evolution} to {Quantum} {Stochastics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--781},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a12/}
}
TY  - JOUR
AU  - A. M. Chebotarev
AU  - G. V. Ryzhakov
TI  - On the Strong Resolvent Convergence of the Schr\"odinger Evolution to Quantum Stochastics
JO  - Matematičeskie zametki
PY  - 2003
SP  - 762
EP  - 781
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a12/
LA  - ru
ID  - MZM_2003_74_5_a12
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%A G. V. Ryzhakov
%T On the Strong Resolvent Convergence of the Schr\"odinger Evolution to Quantum Stochastics
%J Matematičeskie zametki
%D 2003
%P 762-781
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a12/
%G ru
%F MZM_2003_74_5_a12
A. M. Chebotarev; G. V. Ryzhakov. On the Strong Resolvent Convergence of the Schr\"odinger Evolution to Quantum Stochastics. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 762-781. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a12/

[1] Albeverio S., Karwowski W., Koshmanenko V., “Square powers of singularly perturbed operators”, Math. Nachr., 173 (1995), 5–24 | DOI | MR | Zbl

[2] Chebotarev A. M., “Kvantovoe stokhasticheskoe differentsialnoe uravnenie unitarno ekvivalentno kraevoi zadache dlya uravneniya Shrëdingera”, Matem. zametki, 61:4 (1997), 612–622 | MR | Zbl

[3] Chebotarev A. M., Lectures on Quantum Probability, Aportaciones Matemáticas, 14, Sociedad Matemática Mexicana, México, 2000 | MR | Zbl

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[5] Chebotarev A. M., “Chto takoe kvantovoe stokhasticheskoe uravnenie s tochki zreniya funktsionalnogo analiza”, Matem. zametki, 71:3 (2002), 448–469 | MR | Zbl

[6] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl

[7] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992 | MR | Zbl

[8] Meyer P. A., Quantum Probability for Probabilists, Lecture Notes in Math., 1338, Springer-Verlag, Berlin, 1993 | MR

[9] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[10] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR

[11] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[12] Chebotarev A. M., “O simmetrichnoi forme stokhasticheskogo uravneniya Khadsona–Partasarati”, Matem. zametki, 60:5 (1996), 726–750 | MR | Zbl

[13] Fagnola F., “On quantum stochastic differential equations with unbounded coefficients”, Prob. Theory and Related Fields, 86 (1990), 501–516 | DOI | MR | Zbl

[14] Fagnola F., “Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated semigroup”, Quantum Probability and Related Topics, VII, World Scientific, Singapore, 1992, 139–148 | MR | Zbl

[15] Fagnola F., “Characterization of isometric and unitary weakly differentiable cocycles in Fock space”, Quantum Probability and Related Topics, VIII, World Scientific, Singapore, 1993, 143–164 | MR