$F_\rho$ Functions
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 559-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the notion of $F$ function, i.e., a partial recursive function whose resemblance type consists of one isomorphism type, is generalized.
@article{MZM_2003_74_4_a8,
     author = {E. A. Polyakov and A. E. Perov},
     title = {$F_\rho$  {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--563},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a8/}
}
TY  - JOUR
AU  - E. A. Polyakov
AU  - A. E. Perov
TI  - $F_\rho$  Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 559
EP  - 563
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a8/
LA  - ru
ID  - MZM_2003_74_4_a8
ER  - 
%0 Journal Article
%A E. A. Polyakov
%A A. E. Perov
%T $F_\rho$  Functions
%J Matematičeskie zametki
%D 2003
%P 559-563
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a8/
%G ru
%F MZM_2003_74_4_a8
E. A. Polyakov; A. E. Perov. $F_\rho$  Functions. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 559-563. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a8/

[1] Polyakov E. A., “O tipakh skhodstva i izomorfizma chastichno rekursivnykh funktsii”, Sib. matem. zh., 36:2 (1995), 390–396 | MR | Zbl

[2] Degtev A. N., “Svodimost chastichno rekursivnykh funktsii”, Sib. matem. zh., 16:5 (1975), 970–988 | MR | Zbl