The Cauchy Problem for Certain Inhomogeneous Difference-Differential Parabolic Equations
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 538-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an existence and uniqueness theorem for classical solutions of the Cauchy problem for an inhomogeneous equation of parabolic type with shifted space variables.
@article{MZM_2003_74_4_a6,
     author = {A. B. Muravnik},
     title = {The {Cauchy} {Problem} for {Certain} {Inhomogeneous} {Difference-Differential} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {538--548},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a6/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - The Cauchy Problem for Certain Inhomogeneous Difference-Differential Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2003
SP  - 538
EP  - 548
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a6/
LA  - ru
ID  - MZM_2003_74_4_a6
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T The Cauchy Problem for Certain Inhomogeneous Difference-Differential Parabolic Equations
%J Matematičeskie zametki
%D 2003
%P 538-548
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a6/
%G ru
%F MZM_2003_74_4_a6
A. B. Muravnik. The Cauchy Problem for Certain Inhomogeneous Difference-Differential Parabolic Equations. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 538-548. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a6/

[1] Kunisch K., Schappacher W., “Necessary conditions for partial differential equations with delay to generate $C_0$-semigroups”, J. Differential Equations, 50:1 (1983), 49–79 | DOI | MR | Zbl

[2] Desch W., Schappacher W., “Spectral properties of finite-dimensional perturbed linear semigroups”, J. Differential Equations, 59:1 (1985), 80–102 | DOI | MR | Zbl

[3] Vlasov V. V., “Ob odnom klasse differentsialno-raznostnykh uravnenii v gilbertovykh prostranstvakh i nekotorykh spektralnykh voprosakh”, Dokl. RAN, 327:4–6 (1992), 428–432 | Zbl

[4] Vlasov V. V., “Korrektnaya razreshimost odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. VUZov. Ser. matem., 1996, no. 1, 22–35 | MR | Zbl

[5] Skubachevskii A. L., “O nekotorykh svoistvakh ellipticheskikh i parabolicheskikh funktsionalno-differentsialnykh uravnenii”, UMN, 51:1 (1996), 169–170 | MR

[6] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl

[7] Skubachevskii A. L., Shamin R. V., “Pervaya smeshannaya zadacha dlya parabolicheskogo differentsialno-raznostnogo uravneniya”, Matem. zametki, 66:1 (1999), 145–153 | MR

[8] Borok V. M., Zhitomirskii Ya. I., “O zadache Koshi dlya lineinykh uravnenii v chastnykh proizvodnykh s lineino preobrazovannym argumentom”, Dokl. AN SSSR, 200:3 (1971), 515–518 | MR | Zbl

[9] Muravnik A. B., “O zadache Koshi dlya nekotorykh differentsialno-raznostnykh uravnenii parabolicheskogo tipa”, Dokl. RAN, 385:5 (2002), 604–607 | MR

[10] Razgulin A. V., “Rotational multi-petal waves in optical system with 2-D feedback”, Chaos in Optics, Proceedings SPIE, 2039, 1993, 342–352

[11] Vorontsov M. A., Iroshnikov N. G., Abernathy R. L., “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos, Solitons, and Fractals, 4 (1994), 1701–1716 | DOI | Zbl