Radical Semigroup Rings and the Thue--Morse Semigroup
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 529-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative ring with unit, let $S$ be a semigroup with zero, and let $RS$ be a contracted semigroup ring. It is proved that if $RS$ is radical in the sense of Jacobson and if the element 1 has infinite additive order, then $S$ is a locally finite nilsemigroup. Further, for any semigroup $S$, there is a semigroup $T\supset S$ such that the ring $RT$ is radical in the Brown–McCoy sense. Let $S$ be the semigroup of subwords of the sequence $abbabaabbaababbab...$, and let $F$ be the two-element field. Then the ring $FS$ is radical in the Brown–McCoy sense and semisimple in the Jacobson sense.
@article{MZM_2003_74_4_a5,
     author = {I. B. Kozhukhov},
     title = {Radical {Semigroup} {Rings} and the {Thue--Morse} {Semigroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--537},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a5/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
TI  - Radical Semigroup Rings and the Thue--Morse Semigroup
JO  - Matematičeskie zametki
PY  - 2003
SP  - 529
EP  - 537
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a5/
LA  - ru
ID  - MZM_2003_74_4_a5
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%T Radical Semigroup Rings and the Thue--Morse Semigroup
%J Matematičeskie zametki
%D 2003
%P 529-537
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a5/
%G ru
%F MZM_2003_74_4_a5
I. B. Kozhukhov. Radical Semigroup Rings and the Thue--Morse Semigroup. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 529-537. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a5/

[1] Kozhukhov I. B., “Technique of semigroup ring theory: Artinian, perfect and semiprimary semigroup rings”, J. Math. Sci., 97:6 (1999), 4527–4537 | DOI | MR | Zbl

[2] Zhuchin A. V., “O polulokalnykh polugruppovykh koltsakh”, Fundamentalnaya i prikladnaya matem., 5:1 (1999), 139–147 | MR | Zbl

[3] Okninski J., “On regular semigroup rings”, Proc. Roy. Soc. Edinburgh, 99A (1984), 145–151 | MR

[4] de Luca A., Varicchio S., “Some combinatorial properties of the Thue–Morse sequence and a problem in semigroups”, Theor. Comput. Sci., 63:3 (1989), 333–348 | DOI | MR | Zbl