On Ces\`aro Means of Double Trigonometric Fourier Series
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 502-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

Zhizhiashvili studied questions associated with the approximation properties of Cesàro means of trigonometric Fourier series for functions of two variables in the spaces $H^\omega$. It is proved here that the corresponding estimate cannot be improved for $p = 1$ or $p=\infty$.
@article{MZM_2003_74_4_a2,
     author = {U. Goginava},
     title = {On {Ces\`aro} {Means} of {Double} {Trigonometric} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--507},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/}
}
TY  - JOUR
AU  - U. Goginava
TI  - On Ces\`aro Means of Double Trigonometric Fourier Series
JO  - Matematičeskie zametki
PY  - 2003
SP  - 502
EP  - 507
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/
LA  - ru
ID  - MZM_2003_74_4_a2
ER  - 
%0 Journal Article
%A U. Goginava
%T On Ces\`aro Means of Double Trigonometric Fourier Series
%J Matematičeskie zametki
%D 2003
%P 502-507
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/
%G ru
%F MZM_2003_74_4_a2
U. Goginava. On Ces\`aro Means of Double Trigonometric Fourier Series. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 502-507. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[3] Zhizhiashvili L. V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd. TGU, Tbilisi, 1993

[4] Zygmund A., “Sur la summabilité des series de Fourier des fonctions verifiant la condition de Lipschitz”, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 1925, 1–9

[5] Zygmund A., “A remark on conjugate series”, PLMS, 34 (1932), 392–400 | DOI | MR | Zbl