On Cesàro Means of Double Trigonometric Fourier Series
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 502-507
Cet article a éte moissonné depuis la source Math-Net.Ru
Zhizhiashvili studied questions associated with the approximation properties of Cesàro means of trigonometric Fourier series for functions of two variables in the spaces $H^\omega$. It is proved here that the corresponding estimate cannot be improved for $p = 1$ or $p=\infty$.
@article{MZM_2003_74_4_a2,
author = {U. Goginava},
title = {On {Ces\`aro} {Means} of {Double} {Trigonometric} {Fourier} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {502--507},
year = {2003},
volume = {74},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/}
}
U. Goginava. On Cesàro Means of Double Trigonometric Fourier Series. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 502-507. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a2/
[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977
[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965
[3] Zhizhiashvili L. V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd. TGU, Tbilisi, 1993
[4] Zygmund A., “Sur la summabilité des series de Fourier des fonctions verifiant la condition de Lipschitz”, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 1925, 1–9
[5] Zygmund A., “A remark on conjugate series”, PLMS, 34 (1932), 392–400 | DOI | MR | Zbl