Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 629-636
Cet article a éte moissonné depuis la source Math-Net.Ru
In the previous papers of the present author, a general theory of multiplicative Weierstrass points on compact Riemann surfaces for arbitrary characters was developed. In the present paper, some additional relations between multiplicative Weierstrass points on a compact Riemann surface for an arbitrary character and special subsets in the Jacobi variety, the canonical embedding of a compact Riemann surface into a projective space, are established. We not distinction between classical Weierstrass points and multiplicative Weierstrass points on a compact Riemann surface.
@article{MZM_2003_74_4_a15,
author = {V. V. Chueshev},
title = {Multiplicative {Weierstrass} {Points} and the {Jacobi} {Variety} of a {Compact} {Riemann} {Surface}},
journal = {Matemati\v{c}eskie zametki},
pages = {629--636},
year = {2003},
volume = {74},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/}
}
V. V. Chueshev. Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 629-636. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/
[1] Chueshev V. V., Yakubov E. Kh., “Multiplikativnye tochki Veiershtrassa na kompaktnykh rimanovykh poverkhnostyakh”, Sib. matem. zh., 43:6 (2002), 1408–1429 | MR | Zbl
[2] Farkas H. M., Kra I., Riemann Surfaces, Springer-Verlag, New York, 1992 | Zbl
[3] Miranda R., Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, 5, Amer. Math. Soc., New York, 1995 | MR | Zbl
[4] Chueshev V. V., “Vektornye rassloenie Prima i rassloenie Ganninga nad prostranstvom Teikhmyullera”, Sib. matem. zh., 42:4 (2001), 937–951 | MR | Zbl