Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 629-636.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous papers of the present author, a general theory of multiplicative Weierstrass points on compact Riemann surfaces for arbitrary characters was developed. In the present paper, some additional relations between multiplicative Weierstrass points on a compact Riemann surface for an arbitrary character and special subsets in the Jacobi variety, the canonical embedding of a compact Riemann surface into a projective space, are established. We not distinction between classical Weierstrass points and multiplicative Weierstrass points on a compact Riemann surface.
@article{MZM_2003_74_4_a15,
     author = {V. V. Chueshev},
     title = {Multiplicative {Weierstrass} {Points} and the {Jacobi} {Variety} of a {Compact} {Riemann} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {629--636},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/}
}
TY  - JOUR
AU  - V. V. Chueshev
TI  - Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface
JO  - Matematičeskie zametki
PY  - 2003
SP  - 629
EP  - 636
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/
LA  - ru
ID  - MZM_2003_74_4_a15
ER  - 
%0 Journal Article
%A V. V. Chueshev
%T Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface
%J Matematičeskie zametki
%D 2003
%P 629-636
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/
%G ru
%F MZM_2003_74_4_a15
V. V. Chueshev. Multiplicative Weierstrass Points and the Jacobi Variety of a Compact Riemann Surface. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 629-636. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a15/

[1] Chueshev V. V., Yakubov E. Kh., “Multiplikativnye tochki Veiershtrassa na kompaktnykh rimanovykh poverkhnostyakh”, Sib. matem. zh., 43:6 (2002), 1408–1429 | MR | Zbl

[2] Farkas H. M., Kra I., Riemann Surfaces, Springer-Verlag, New York, 1992 | Zbl

[3] Miranda R., Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, 5, Amer. Math. Soc., New York, 1995 | MR | Zbl

[4] Chueshev V. V., “Vektornye rassloenie Prima i rassloenie Ganninga nad prostranstvom Teikhmyullera”, Sib. matem. zh., 42:4 (2001), 937–951 | MR | Zbl