Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 618-628

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions necessary for $\varepsilon$-controllability in dimension one of first-order singular linear differential equation in Banach spaces. This result generalizes similar results for regular equations. For this class of equations, we show that the notion of $\varepsilon$-controllability in dimension two is more natural, and moreover, analogous necessary conditions are sufficient in the case of dimension two. Using an abstract approach, we derive sufficient conditions for the $\varepsilon$-controllability in dimension two of the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation.
@article{MZM_2003_74_4_a14,
     author = {V. E. Fedorov and O. A. Ruzakova},
     title = {Controllability in {Dimensions} {One} and {Two} of {Sobolev-Type} {Equations} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {618--628},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - O. A. Ruzakova
TI  - Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 618
EP  - 628
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/
LA  - ru
ID  - MZM_2003_74_4_a14
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A O. A. Ruzakova
%T Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
%J Matematičeskie zametki
%D 2003
%P 618-628
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/
%G ru
%F MZM_2003_74_4_a14
V. E. Fedorov; O. A. Ruzakova. Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 618-628. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/