Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 618-628.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions necessary for $\varepsilon$-controllability in dimension one of first-order singular linear differential equation in Banach spaces. This result generalizes similar results for regular equations. For this class of equations, we show that the notion of $\varepsilon$-controllability in dimension two is more natural, and moreover, analogous necessary conditions are sufficient in the case of dimension two. Using an abstract approach, we derive sufficient conditions for the $\varepsilon$-controllability in dimension two of the Cauchy–Dirichlet problem for the Barenblatt–Zheltov–Kochina equation.
@article{MZM_2003_74_4_a14,
     author = {V. E. Fedorov and O. A. Ruzakova},
     title = {Controllability in {Dimensions} {One} and {Two} of {Sobolev-Type} {Equations} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {618--628},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - O. A. Ruzakova
TI  - Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 618
EP  - 628
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/
LA  - ru
ID  - MZM_2003_74_4_a14
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A O. A. Ruzakova
%T Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
%J Matematičeskie zametki
%D 2003
%P 618-628
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/
%G ru
%F MZM_2003_74_4_a14
V. E. Fedorov; O. A. Ruzakova. Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 618-628. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a14/

[1] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[2] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., New York, 1999 | Zbl

[3] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18 (1954), 3–50 | MR | Zbl

[4] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | Zbl

[5] Sviridyuk G. A., “Zadacha Koshi dlya lineinogo singulyarnogo operatornogo uravneniya tipa Soboleva”, Differents. uravneniya, 23:12 (1987), 2168–2171 | MR | Zbl

[6] Sholokhovich F. A., “Ob upravlyaemosti lineinykh dinamicheskikh sistem”, Izv. UrGU, 10:1 (1998), 103–126 | MR

[7] Kurzhanskii A. B., “K upravlyaemosti v banakhovykh prostranstvakh”, Differents. uravneniya, 5:9 (1969), 1715–1718 | MR | Zbl

[8] Sholokhovich F. A., “Ob upravlyaemosti v gilbertovom prostranstve”, Differents. uravneniya, 3:3 (1967), 479–484 | MR | Zbl

[9] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 58–73 | MR