Infinite Independent Systems of Identities of an Associative Algebra over an Infinite Field of Characteristic Two
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 603-611.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak B$ be the variety of associative (special Jordan, respectively) algebras over an infinite field of characteristic 2 defined by the identity $((((x_1,x_2),x_3),((x_4,x_5),x_6)),(x_7,x_8))=0$ ($((x_1x_2\cdot x_3)(x_4x_5\cdot x_6))(x_7x_8)=0$, respectively). In this paper, we construct infinite independent systems of identities in the variety $\mathfrak B$ ($\mathfrak D$ , respectively). This implies that the set of distinct nonfinitely based subvarieties of the variety $\mathfrak B$ has the cardinality of the continuum and that there are algebras in $\mathfrak B$ with undecidable word problem.
@article{MZM_2003_74_4_a12,
     author = {N. I. Sandu},
     title = {Infinite {Independent} {Systems} of {Identities} of an {Associative} {Algebra} over an {Infinite} {Field} of {Characteristic} {Two}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--611},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a12/}
}
TY  - JOUR
AU  - N. I. Sandu
TI  - Infinite Independent Systems of Identities of an Associative Algebra over an Infinite Field of Characteristic Two
JO  - Matematičeskie zametki
PY  - 2003
SP  - 603
EP  - 611
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a12/
LA  - ru
ID  - MZM_2003_74_4_a12
ER  - 
%0 Journal Article
%A N. I. Sandu
%T Infinite Independent Systems of Identities of an Associative Algebra over an Infinite Field of Characteristic Two
%J Matematičeskie zametki
%D 2003
%P 603-611
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a12/
%G ru
%F MZM_2003_74_4_a12
N. I. Sandu. Infinite Independent Systems of Identities of an Associative Algebra over an Infinite Field of Characteristic Two. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 603-611. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a12/

[1] Specht W., “Gesetze in Ringen, 1”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[2] Dnestrovskaya tetrad, Novosibirsk, 1986

[3] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26:5 (1987), 597–641 | MR

[4] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestva”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 18, VINITI, M., 1987, 117–240

[5] Kourovskaya tetrad, Novosibirsk, 1990

[6] Zalesskii A. E., Mikhalev A. V., “Gruppovye koltsa”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1973, 5–118 | MR

[7] Bovdi A. A., Gruppovye koltsa, Uzhgorod, 1974 | Zbl

[8] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc., 1970, no. 2, 280–286 | DOI | MR | Zbl

[9] Leng S., Algebra, Mir, M., 1968

[10] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | Zbl

[11] Dzhekobson N., Algebry Li, Mir, M., 1964

[12] Shirshov A. I., “Svobodnye lievy koltsa”, Matem. sb., 45 (87) (1958), 113–122 | MR | Zbl

[13] Vaughan-Lee M. R., “Varieties of Lie algebras”, Quart. J. Math., 21:83 (1970), 297–308 | DOI | MR | Zbl

[14] Vaughan-Lee M. R., “Abelian-by-nilpotent varieties of Lie algebras”, J. London Math. Soc., 11:3 (1975), 263–266 | DOI | MR | Zbl

[15] Schigolev V. V., “Primery beskonechno baziruemykh $T$-prostranstv”, Matem. sb., 191:3 (2000), 143–160 | MR | Zbl

[16] Belov A. Ya., “Kontrprimery k probleme Shpekhta”, Matem. sb., 191:3 (2000), 13–24 | MR | Zbl