Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 590-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that under perturbations by a rank-one typical operator, a fixed eigenvalue loses one Jordan block of maximal order, while the orders of the other Jordan blocks remain unchanged. We construct the first-order perturbation theory for the new eigenvalues and the zero-order approximations to the corresponding eigenvectors.
@article{MZM_2003_74_4_a11,
     author = {S. V. Savchenko},
     title = {Typical {Changes} in {Spectral} {Properties} under {Perturbations} by a {Rank-One} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {590--602},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a11/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator
JO  - Matematičeskie zametki
PY  - 2003
SP  - 590
EP  - 602
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a11/
LA  - ru
ID  - MZM_2003_74_4_a11
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator
%J Matematičeskie zametki
%D 2003
%P 590-602
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a11/
%G ru
%F MZM_2003_74_4_a11
S. V. Savchenko. Typical Changes in Spectral Properties under Perturbations by a Rank-One Operator. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 590-602. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a11/

[1] Kato T., Perturbation Theory for Linear Operators, Springer, Berlin, 1980

[2] Baumgartel H., Analytic Perturbation Theory for Matrices and Operators, Birkhäuser, Basel, 1985

[3] Moro J., Dopico F. M., “First order eigenvalue perturbation theory and the Newton diagram”, Proceedings of the Applied Mathematics and Scientific Computing Meeting AMSC (2001), Kluwer, 2002

[4] Lidskii V. B., “K teorii vozmuschenii nesamosopryazhennykh operatorov”, ZhVM i MF, 6:1 (1966), 52–60 | MR | Zbl

[5] Vishik M. I., Lyusternik L. A., “Reshenie nekotorykh zadach o vozmuschenii v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii”, UMN, 15:3 (1960), 3–80 | MR | Zbl

[6] Gokhberg I. Ts., Krein M. G., “Osnovnye polozheniya o defektnykh i kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2 (1957), 43–118 | MR

[7] Gelfand I. M., Lidskii V. B., “O strukture oblastei ustoichivosti lineinykh kanonicheskikh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, UMN, 10:1 (1955), 3–40 | MR | Zbl

[8] Moro J., Burke J. V., Overton M. L., “On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure”, SIAM J. Matrix Anal. Appl., 18 (1997), 793–817 | DOI | MR | Zbl

[9] Ma Y., Edelman A., “Nongeneric eigenvalue perturbations of Jordan blocks”, Linear Algebra Appl., 273 (1998), 45–63 | MR | Zbl

[10] Jeannerod C.-P., On some nongeneric perturbations of an arbitrary Jordan structure, Preprint

[11] Krein M., Gokhberg I., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[12] Savchenko S. V., “On the Perron roots of principal submatrices of co-order one of irreducible nonnegative matrices”, Linear Algebra Appl., 361 (2003), 257–277 | DOI | MR | Zbl

[13] Savchenko S. V., “O spektralnykh svoistvakh nerazlozhimoi neotritsatelnoi matritsy i ee glavnykh podmatrits koporyadka odin”, UMN, 55:1 (2000), 191–192 | MR | Zbl

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967

[15] Karlin S., “Positive operators”, J. Math. Mech., 8 (1959), 907–937 | MR | Zbl

[16] Hartwig R. E., Neumann M., Rose N. J., “An algebraic-analytic approach to nonnegative basis”, Linear Algebra Appl., 133 (1990), 77–88 | DOI | MR | Zbl

[17] Markushevich A. I., Teoriya analiticheskikh funktsii, Fizmatgiz, M., 1950