Jacobi Fields along a Geodesic with Random Curvature
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 416-424
Voir la notice de l'article provenant de la source Math-Net.Ru
A notion of a renewable geodesic on which the curvature is a random process is introduced. It is shown that the modulus of the Jacobi field along such a geodesic grows exponentially. At the same time, the existence with probability 1 of infinitely many conjugate points is demonstrated.
@article{MZM_2003_74_3_a9,
author = {V. G. Lamburt and D. D. Sokolov and V. N. Tutubalin},
title = {Jacobi {Fields} along a {Geodesic} with {Random} {Curvature}},
journal = {Matemati\v{c}eskie zametki},
pages = {416--424},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/}
}
TY - JOUR AU - V. G. Lamburt AU - D. D. Sokolov AU - V. N. Tutubalin TI - Jacobi Fields along a Geodesic with Random Curvature JO - Matematičeskie zametki PY - 2003 SP - 416 EP - 424 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/ LA - ru ID - MZM_2003_74_3_a9 ER -
V. G. Lamburt; D. D. Sokolov; V. N. Tutubalin. Jacobi Fields along a Geodesic with Random Curvature. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 416-424. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/