Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_3_a9, author = {V. G. Lamburt and D. D. Sokolov and V. N. Tutubalin}, title = {Jacobi {Fields} along a {Geodesic} with {Random} {Curvature}}, journal = {Matemati\v{c}eskie zametki}, pages = {416--424}, publisher = {mathdoc}, volume = {74}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/} }
TY - JOUR AU - V. G. Lamburt AU - D. D. Sokolov AU - V. N. Tutubalin TI - Jacobi Fields along a Geodesic with Random Curvature JO - Matematičeskie zametki PY - 2003 SP - 416 EP - 424 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/ LA - ru ID - MZM_2003_74_3_a9 ER -
V. G. Lamburt; D. D. Sokolov; V. N. Tutubalin. Jacobi Fields along a Geodesic with Random Curvature. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 416-424. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a9/
[1] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971
[2] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M.–L., 1948 | Zbl
[3] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1975 | Zbl
[4] Gilbert D., Osnovaniya geometrii, OGIZ, M.–L., 1948
[5] Efimov N. V., “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Matem. sb., 64(106):2 (1964), 286–320 | MR | Zbl
[6] Efimov N. V., “Giperbolicheskie zadachi teorii poverkhnostei.”, Trudy mezhdunarodnogo kongressa matematikov (Moskva, 1966), Mir, M., 1968, 177–188 | MR
[7] Bakelman I. Ya., Verner A. L., Kantor B. E., Vvedenie v differentsialnuyu geometriyu “v tselom”, Nauka, M., 1973 | Zbl
[8] Furstenberg H. A, “Poisson formula for semi-simple Lie groups”, Ann. Math., 77:2 (1963), 335–386 | DOI | MR | Zbl
[9] Furstenberg H., “Noncommuting random products”, Trans. Amer. Math. Soc., 108:3 (1963), 377–428 | DOI | MR | Zbl