On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 369-386

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Morse–Smale diffeomorphisms of n-manifolds with four periodic points which are the only periodic points. We prove that for $n= 3$ these diffeomorphisms are gradient-like and define a class of diffeomorphisms inevitably possessing a nonclosed heteroclinic curve. For $n\ge4$, we construct a complete conjugacy invariant in the class of diffeomorphisms with a single saddle of codimension one.
@article{MZM_2003_74_3_a5,
     author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev},
     title = {On {Morse--Smale} {Diffeomorphisms} with {Four} {Periodic} {Points} on {Closed} {Orientable} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--386},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds
JO  - Matematičeskie zametki
PY  - 2003
SP  - 369
EP  - 386
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/
LA  - ru
ID  - MZM_2003_74_3_a5
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds
%J Matematičeskie zametki
%D 2003
%P 369-386
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/
%G ru
%F MZM_2003_74_3_a5
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev. On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 369-386. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/