On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 369-386
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Morse–Smale diffeomorphisms of n-manifolds with four periodic points which are the only periodic points. We prove that for $n= 3$ these diffeomorphisms are gradient-like and define a class of diffeomorphisms inevitably possessing a nonclosed heteroclinic curve. For $n\ge4$, we construct a complete conjugacy invariant in the class of diffeomorphisms with a single saddle of codimension one.
@article{MZM_2003_74_3_a5,
author = {V. Z. Grines and E. V. Zhuzhoma and V. S. Medvedev},
title = {On {Morse--Smale} {Diffeomorphisms} with {Four} {Periodic} {Points} on {Closed} {Orientable} {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {369--386},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/}
}
TY - JOUR AU - V. Z. Grines AU - E. V. Zhuzhoma AU - V. S. Medvedev TI - On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds JO - Matematičeskie zametki PY - 2003 SP - 369 EP - 386 VL - 74 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/ LA - ru ID - MZM_2003_74_3_a5 ER -
%0 Journal Article %A V. Z. Grines %A E. V. Zhuzhoma %A V. S. Medvedev %T On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds %J Matematičeskie zametki %D 2003 %P 369-386 %V 74 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/ %G ru %F MZM_2003_74_3_a5
V. Z. Grines; E. V. Zhuzhoma; V. S. Medvedev. On Morse--Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 369-386. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a5/