About the Notion of Semiring of Sets
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 362-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a generalized notion of semiring and prove that all known properties that semirings have according to the old definition are preserved.
@article{MZM_2003_74_3_a4,
     author = {D. F. Goguadze},
     title = {About the {Notion} of {Semiring} of {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {362--368},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a4/}
}
TY  - JOUR
AU  - D. F. Goguadze
TI  - About the Notion of Semiring of Sets
JO  - Matematičeskie zametki
PY  - 2003
SP  - 362
EP  - 368
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a4/
LA  - ru
ID  - MZM_2003_74_3_a4
ER  - 
%0 Journal Article
%A D. F. Goguadze
%T About the Notion of Semiring of Sets
%J Matematičeskie zametki
%D 2003
%P 362-368
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a4/
%G ru
%F MZM_2003_74_3_a4
D. F. Goguadze. About the Notion of Semiring of Sets. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 362-368. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a4/

[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[2] Khalmosh P., Teoriya mery, IL, M., 1953