Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the spaces $B_{pq}^s(G)$ and $L_{pq}^s(G)$ of functions $f$ with positive exponent of smoothness $s > 0$ given on a domain $G\subset\mathbb R^n$. The norms on these spaces are defined via integral norms of the difference of the function $f$ of order $m > s$ treated as a function of the point of the domain and of the difference increment. For an arbitrary domain $G\subset\mathbb R^n$, we characterize these spaces in terms of the local approximations of the function by polynomials of degree $m-1$.
@article{MZM_2003_74_3_a2,
     author = {O. V. Besov},
     title = {Equivalent {Norms} in {Spaces} of {Functions} of {Fractional} {Smoothness} on {Arbitrary} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
JO  - Matematičeskie zametki
PY  - 2003
SP  - 340
EP  - 349
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/
LA  - ru
ID  - MZM_2003_74_3_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
%J Matematičeskie zametki
%D 2003
%P 340-349
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/
%G ru
%F MZM_2003_74_3_a2
O. V. Besov. Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[3] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[4] Strichartz P. S., “Multipliers on fractional Sobolev spaces”, J. Math. and Mech., 16:9 (1967), 1031–1060 | MR | Zbl

[5] Lizorkin P. I., “Operatory, svyazannye s drobnym differentsirovaniem, i klassy differentsiruemykh funktsii”, Tr. MIAN, 117, Nauka, M., 1972, 212–243 | MR | Zbl

[6] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | Zbl

[7] Adzhiev S. S., “Kharakterizatsiya funktsionalnykh prostranstv $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ i vlozheniya v $BMO(G)$”, Tr. MIAN, 214, Nauka, M., 1997, 7–24 | Zbl

[8] Triebel H., “Local apprpximation spaces”, Z. Anal. und Anwend., 88:3 (1989), 261–288 | MR

[9] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. MMO, 24, URSS, M., 1971, 71–132 | MR

[10] DeVore R. A., Sharpley R. S., Maximal function measuring smoothness, Mem. Amer. Math. Soc., 293, 1984 | MR | Zbl

[11] Calderón A. P., “Estimates for singular integral operators in terms of maximal functions”, Stud. Math., 44 (1972), 563–682 | MR

[12] Schvartz J., “A remark on inequalities of Calderón–Zygmund type for vector-valued functions”, Comm. Pure and Appl. Math., 14:4 (1961), 785–799 | DOI | MR

[13] Bendek A., Kalderon A. P., Pantsone R., “Operatory svertki na funktsiyakh so znacheniyami v banakhovom prostranstve”, Matematika, 7:5 (1963), 121–131

[14] Krée P., “Propriétés de continuiuté dans $L^p$ de certains noyaux”, Boll. Unione Mat. Ital., 22:3 (1967), 330–334 | MR

[15] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[16] Besov O. V., Ilin V. P., “Proektsionnye predstavleniya funktsii cherez raznosti”, Tr. MIAN, 150, Nauka, M., 1979, 3–10 | MR | Zbl