Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the spaces $B_{pq}^s(G)$ and $L_{pq}^s(G)$ of functions $f$ with positive exponent of smoothness $s > 0$ given on a domain $G\subset\mathbb R^n$. The norms on these spaces are defined via integral norms of the difference of the function $f$ of order $m > s$ treated as a function of the point of the domain and of the difference increment. For an arbitrary domain $G\subset\mathbb R^n$, we characterize these spaces in terms of the local approximations of the function by polynomials of degree $m-1$.
@article{MZM_2003_74_3_a2,
author = {O. V. Besov},
title = {Equivalent {Norms} in {Spaces} of {Functions} of {Fractional} {Smoothness} on {Arbitrary} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {340--349},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/}
}
O. V. Besov. Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/