Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the spaces $B_{pq}^s(G)$ and $L_{pq}^s(G)$ of functions $f$ with positive exponent of smoothness $s > 0$ given on a domain $G\subset\mathbb R^n$. The norms on these spaces are defined via integral norms of the difference of the function $f$ of order $m > s$ treated as a function of the point of the domain and of the difference increment. For an arbitrary domain $G\subset\mathbb R^n$, we characterize these spaces in terms of the local approximations of the function by polynomials of degree $m-1$.
@article{MZM_2003_74_3_a2,
     author = {O. V. Besov},
     title = {Equivalent {Norms} in {Spaces} of {Functions} of {Fractional} {Smoothness} on {Arbitrary} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
JO  - Matematičeskie zametki
PY  - 2003
SP  - 340
EP  - 349
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/
LA  - ru
ID  - MZM_2003_74_3_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains
%J Matematičeskie zametki
%D 2003
%P 340-349
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/
%G ru
%F MZM_2003_74_3_a2
O. V. Besov. Equivalent Norms in Spaces of Functions of Fractional Smoothness on Arbitrary Domains. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a2/