An Analog of the Sauer Theorem
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 463-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an analog of the Sauer theorem for projectively equivalent surfaces in the class of infinitely small equiareal deformations that pointwise preserve the spherical image of the surface.
@article{MZM_2003_74_3_a14,
     author = {V. T. Fomenko},
     title = {An {Analog} of the {Sauer} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {463--470},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a14/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - An Analog of the Sauer Theorem
JO  - Matematičeskie zametki
PY  - 2003
SP  - 463
EP  - 470
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a14/
LA  - ru
ID  - MZM_2003_74_3_a14
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T An Analog of the Sauer Theorem
%J Matematičeskie zametki
%D 2003
%P 463-470
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a14/
%G ru
%F MZM_2003_74_3_a14
V. T. Fomenko. An Analog of the Sauer Theorem. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 463-470. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a14/

[1] Sauer R., “Infinitesimale Verbiegungen zueinander projektiver Flächen”, Math. Ann., 3 (1935)

[2] Kagan V. F., Teoriya poverkhnostei, T. I, OGIZ, M., 1947

[3] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959