Remark on a Problem of Rational Approximation
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 446-448
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that for any nonincreasing number sequence $\{a_n\}^{\infty}_{n=0}$ converging to zero, there exists a continuous $2\pi$-periodic function $g$ such that the sequence of its best uniform trigonometric rational approximations $\{R_n(g,C_{2\pi})\}^{\infty}_{n=0}$ and the sequence $\{a_n\}^{\infty}_{n=0}$ have the same order of decay.
@article{MZM_2003_74_3_a12,
author = {A. P. Starovoitov},
title = {Remark on a {Problem} of {Rational} {Approximation}},
journal = {Matemati\v{c}eskie zametki},
pages = {446--448},
year = {2003},
volume = {74},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/}
}
A. P. Starovoitov. Remark on a Problem of Rational Approximation. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 446-448. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/
[1] Dolzhenko E. P., “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–320 | MR | Zbl
[2] Bernshtein S. N., “Sur le problème inverse de la théorie de la meilleure approximation des fonctions continues”, C. R. Acad. Sci., 206 (1938), 1520–1523 | Zbl
[3] Starovoitov A. P., “K probleme opisaniya posledovatelnostei nailuchshikh trigonometricheskikh ratsionalnykh priblizhenii”, Matem. zametki, 69:6 (2001), 919—924 | MR | Zbl
[4] Bernshtein S. N., Sobranie sochinenii v 4-kh tomakh, T. 2, Izd-vo AN SSSR, M., 1954