Remark on a Problem of Rational Approximation
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 446-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for any nonincreasing number sequence $\{a_n\}^{\infty}_{n=0}$ converging to zero, there exists a continuous $2\pi$-periodic function $g$ such that the sequence of its best uniform trigonometric rational approximations $\{R_n(g,C_{2\pi})\}^{\infty}_{n=0}$ and the sequence $\{a_n\}^{\infty}_{n=0}$ have the same order of decay.
@article{MZM_2003_74_3_a12,
     author = {A. P. Starovoitov},
     title = {Remark on a {Problem} of {Rational} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {446--448},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Remark on a Problem of Rational Approximation
JO  - Matematičeskie zametki
PY  - 2003
SP  - 446
EP  - 448
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/
LA  - ru
ID  - MZM_2003_74_3_a12
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Remark on a Problem of Rational Approximation
%J Matematičeskie zametki
%D 2003
%P 446-448
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/
%G ru
%F MZM_2003_74_3_a12
A. P. Starovoitov. Remark on a Problem of Rational Approximation. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 446-448. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a12/

[1] Dolzhenko E. P., “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–320 | MR | Zbl

[2] Bernshtein S. N., “Sur le problème inverse de la théorie de la meilleure approximation des fonctions continues”, C. R. Acad. Sci., 206 (1938), 1520–1523 | Zbl

[3] Starovoitov A. P., “K probleme opisaniya posledovatelnostei nailuchshikh trigonometricheskikh ratsionalnykh priblizhenii”, Matem. zametki, 69:6 (2001), 919—924 | MR | Zbl

[4] Bernshtein S. N., Sobranie sochinenii v 4-kh tomakh, T. 2, Izd-vo AN SSSR, M., 1954